
A Hybrid ADMM for
Six-Degree-of-Freedom Entry
Trajectory Optimization Based
on Dual Quaternions

CHAOYING PEI
Purdue University, West Lafayette, IN USA

CHANGHUANG WAN
Tuskegee University, Tuskegee, AL USA

RAN DAI , Member, IEEE
Purdue University, West Lafayette, IN USA

JEREMY R. REA
NASA Johnson Space Center, Houston, TX USA

This article investigates the six-degree-of-freedom (6-DoF) entry
trajectory optimization problem in a Human-Mars entry, powered
descent, and landing mission. During the entry phase, aerodynamic
forces are employed to decelerate the vehicle. Instead of being treated
as a point mass, both translational and rotational motions of the entry
vehicle are considered. Specifically, the 6-DoF rigid body motion of the
entry vehicle is modeled using the unit dual quaternion representations
to avoid highly nonlinear terms in the flight dynamics expression
originally based on the flight-path coordinates. Then, the entry trajec-
tory optimization problem is to minimize the terminal speed subject
to dynamical, operational, and mission constraints modeled by the
new representation scheme. By applying the discretization technique
and polynomial approximation, the entry trajectory optimization
problem is reformulated as a nonconvex quadratically constrained
quadratic programming problem, which is solved via a hybrid alter-
nating direction method of multipliers (ADMM). The accuracy of the
dual-quaternion-based model and the computational efficiency of the
hybrid ADMM are validated via numerical simulations.
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I. INTRODUCTION

Entry, powered descent, and landing (EDL) operations
in a Mars exploration mission require to guide a spacecraft
from the Mars atmosphere interface to a desired landing lo-
cation with a near-zero speed. In this article, we focus on the
six-degree-of-freedom (6-DoF) entry trajectory optimiza-
tion for a Human-scale entry vehicle to guide the vehicle
to a designated terminal altitude with minimum terminal
speed. Due to the large variations of Mars atmosphere den-
sity [1], the complexity of entry vehicle dynamics, including
both translational and rotational motion, and mission and
operational constraints, it is computationally intractable to
generate optimal control commands considering the transla-
tional and rotational motion simultaneously while satisfying
all specified constraints [2]. There are extensive studies
on optimal entry guidance in interplanetary exploration
missions. In general, two types of approaches have been
developed for optimal entry guidance [3]. One is reference
trajectory-based guidance, where the reference trajectory is
generated offline, and then, tracked in real time. For exam-
ple, a second-order cone programming (SOCP) algorithm
has been applied to generate a 3-D optimal entry path [4].
Linear pseudospectral model predictive control has been
applied for onboard entry trajectory optimization [5]. On
the other hand, with the improvement of high-performance
computing technology, numerical predictor-corrector guid-
ance (NPCG) has obtained more attention. Instead of re-
lying on a scheme with separate trajectory planner and
tracking controller, NPCG algorithms have the capability
to accommodate large trajectory dispersion and are compu-
tationally viable for real-time implementation [6], [7], [8].
For example, the authors in [6] has applied the predictor-
corrector method to a broad scope of entry vehicles with
different lift-to-drag ratios. The authors in [9] compared the
performance of the NPCG results using bank angle control
and direct force control, where the direct force control
method has verified advantages in terms of reducing the
open-loop flight errors. Most of the existing works of entry
guidance schemes consider the translational trajectory op-
timization and entry vehicle attitude control as two separate
problems [1], [10], [11], [12]. Specifically, works focusing
on generating optimal trajectories assume a point-mass ve-
hicle that only considers three-degree-of-freedom (3-DoF)
translational dynamics. For example, the authors in [13]
have developed a trajectory planner for atmospheric entry to
generate a feasible trajectory by controlling the bank angle.
With a reference entry trajectory, different controllers have
been designed to track the reference path. For example, the
authors in [10] and [14] have designed adaptive controllers
to reduce tracking errors due to uncertainties during the
flight.

However, considering the coupling relationship of the
translational and rotational motion, instead of solving two
separate problems, the rotational and translational motion
can be integrated when searching for the optimal control
commands to guide the entry vehicle. Then, the constraints
related to the rotational motion can be considered directly in
the entry trajectory optimization. 6-DoF dynamical models
have been considered in trajectory optimization for ma-
nipulators [15], industrial robots [16], and reusable launch
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vehicles [17]. In addition, the dual-quaternion-based 6-DoF
dynamical model that integrates translational and rotational
motion has been applied in the powered descent guidance
problem [18]. However, there is no attempt of applying
the iterative SOCP to the 6-DoF entry trajectory opti-
mization problem. Existing work related to 6-DoF entry
guidance focuses on entry process simulation considering
aerodynamic-propulsive interactions [19] or decomposes
the problem into trajectory planning and attitude control
problems [20]. In this article, we consider the 6-DoF entry
trajectory optimization problem using the dual quaternion
representations. Furthermore, different from the bank angle
or direct force control, the net moment control is introduced
to improve the flexibility when searching for the optimal
trajectory. Different from the existing literature on entry
trajectory optimization that describes the translational mo-
tion using flight-path coordinates and the rotational motion
using Euler angles [4], [6], [11], [21], the dual-quaternion-
based model describes the spatial motion of the entry vehicle
in a compact form. Furthermore, since the traditional entry
dynamical model using flight-path coordinates involves
trigonometric functions, it leads to highly nonlinear terms
in the entry trajectory optimization problem and subsequent
computational complexity when searching for the optimal
solution. Moreover, linearization of highly nonlinear terms
in the optimization operation generally leads to reduced
precision. The dual-quaternion-based model avoids highly
nonlinear terms and singularity when depicting the rotation
of a rigid body [22], [23].

By combining the dynamics and multiple constraints
based on dual quaternions, the entry trajectory optimization
problem is to minimize the terminal speed with a designated
terminal altitude while satisfying all specified constraints.
The reduced speed at the terminal point of the entry phase
will benefit fuel saving in the following powered descent
phase. By approximating the nonpolynomial functions, e.g.,
the air density function, using continuous polynomials, the
entry trajectory optimization is reformulated as a polyno-
mial optimal control problem. After applying discretization
techniques and introducing new variables, the polynomial
optimal control problem can be equivalently expressed as
a nonconvex quadratically constrained quadratic program-
ming (QCQP) problem.

QCQP has been applied in a wide range of optimiza-
tion problems, such as optimal power flow [24], signal
processing [25], and sensor network localization [26]. Ex-
tensive numerical methods have been developed to solve
general/nonconvex QCQPs, which can be categorized into
relaxation methods and successive convex approximation
(SCA) [27], [28]. The relaxation methods can obtain a
lower bound on the cost function, which cannot guarantee
to find an optimal or even a feasible solution for noncon-
vex QCQPs in most cases. On the other hand, the SCA
approaches solve QCQPs via sequential convex optimiza-
tion, where each iteration is solved via a convex solver,
e.g., Mosek [29]. When another iterative approach, e.g.,
interior point method [30], is applied to solve each sequen-
tial problem formulated in SCA, the multiloop iterations
increase the computational load. The alternating direction
method of multipliers (ADMM) is a well-known sequential

algorithm for convex optimization that divides an original
problem into subproblems and solves them in an alternating
sequence. It aims to reduce the computational complexity
by fixing a subset of variables when solving each subprob-
lem. The ADMM [31], [32] and its variants [33], [34] are
designed initially for convex optimization problems. Recent
work in [35] and [36] has applied the ADMM framework
to solve nonconvex QCQPs with proven convergence under
mild conditions. However, the entry trajectory optimization
problem that includes a long range of altitude and speed
profile requires many iterations to achieve high precision
when employing the ADMM framework to solve the for-
mulated QCQP problem [37], [38], [39]. To accelerate the
convergence rate while providing flexibility to search for an
optimal solution, a hybrid ADMM algorithm is proposed.
The new approach for solving large-scale QCQPs starts
with the traditional ADMM framework until the errors
from constraints meet a specified threshold. Different from
the customized ADMM introduced in [39], a consensus
constraint is introduced into the ADMM procedures, which
forces the two sets from ADMM primary updates to equal to
their average at each iteration to accelerate the convergence
rate with a guaranteed linear convergence rate. The analysis
of the bounded error and convergence property of the hybrid
ADMM is provided. To verify the accuracy of the dual-
quaternion-based entry dynamical model and the efficiency
of the hybrid ADMM algorithm, simulation examples with
comparative results from the traditional dynamical model
and a nonlinear programming (NLP) solver are provided.

The contributions of this article include the following:

1) integration of the translational and rotational motion
of an entry vehicle in a compact form represented by
dual quaternions;

2) development of a hybrid ADMM algorithm for solv-
ing large-scale QCQPs with a rigorously proved
bounded error and linear convergence rate;

3) applying the hybrid ADMM algorithm to the atmo-
spheric entry trajectory optimization problem using
a dual quaternion formulation.

This article is organized as follows. Section II introduces
the dual quaternion and the definition of coordinate frames.
Section III describes the formulation of atmospheric entry
trajectory optimization problem based on dual quaternion
representations and flight-path angle. Section IV presents
the conversion of the trajectory optimization problem into
a homogeneous QCQP. Section V proposes the hybrid
ADMM algorithm and its convergence analysis. Simulation
results are provided in Section VI and finally, Section VII
concludes this article. All the omitted proofs are presented
in Appendix.

II. PRELIMINARY AND NOTATIONS

A. Introduction of Dual Quaternion

A quaternion q̂ is represented by a scalar q0 and a vector
q = [q1, q2, q3]T , which can be written in a vector form as

q̂ = [q0, q1, q2, q3]T = [q0, qT
]T ∈ H (1)
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where H denotes the algebra of quaternions. Unit quater-
nions with their norm equals to 1 are usually used to
describe orientations and spatial rotations of objects in three
dimensions [40].

Dual quaternion is an extension of quaternion to effi-
ciently express both rotation and translation between two
coordinate frames [41]. A dual quaternion σ̃ has the form

σ̃ = p̂ + εq̂ ∈ Q (2)

where ε is the dual unit, which have the properties
ε2 = 0 and ε �= 0, Q denotes the algebra of dual quater-
nions, with q̂ defined in (1), similarly, p̂ ∈ H is given as
p̂ = [p0, p1, p2, p3]T = [p0, pT ]T .

The dual-quaternion-related operations can be found
in [41]. Among them, the multiplication of a matrix K ∈
R8×8 and a dual quaternion σ̃ ∈ Q is commonly used. To
better define the multiplication operation between a matrix
and a dual quaternion, a dual quaternion set can be em-
bedded in a Euclidean space R8. Thus, we can handle σ̃ as
a vector with eight elements, σ̃ = [p̂T , q̂T

]T ∈ R8. More-
over, the multiplication of the quaternion can be denoted in
matrix expressions as

p̂ ⊗ q̂ = [p̂]⊗q̂ = [p̂]∗⊗q̂ (3)

where [p̂]⊗ =
[

p p0I3 + p×

p0 −pT

]
and [q̂]∗⊗ =

[
q q0I3 − q×

q0 −qT

]
.

Here, p× and q× represent the matrices related to the

cross product operation, i.e., p× =
[

0 −p3 p2

p3 0 −p1

−p2 p1 0

]
and

q× =
[

0 −q3 q2

q3 0 −q1

−q2 q1 0

]
.

With the definition in (3), the dual quaternion multipli-
cation can be expressed as

σ̃1 ⊗ σ̃2 = [σ̃1]⊗σ̃2 = [σ̃1]∗⊗σ̃2 (4)

where [σ̃1]⊗ =
[

[p̂1]⊗ 04×4

[q̂1]⊗ [p̂1]⊗

]
and [σ̃2]∗⊗ =

[
[p̂2]∗⊗ 04×4

[q̂2]∗⊗ [p̂2]∗⊗

]
.

Similarly, the cross operation of two quaternions can be
expressed as matrix-vector multiplication

p̂ � q̂ = [p̂]�q̂ = [p̂]∗�q̂ (5)

where [p̂]� =
[

p p0I3 + p×

0 01×3

]
and [q̂]∗� =

[
q q0I3 − q×

0 01×3

]
.With

the definition in (5), the dual quaternion cross product
operation can also be expressed as

σ̃1 � σ̃2 = [σ̃1]�σ̃2 = [σ̃1]∗�σ̃2 (6)

where [σ̃1]� =
[

[p̂1]� 04×4

[q̂1]� [p̂1]�

]
and [σ̃2]∗� =

[
[p̂2]∗� 04×4

[q̂2]∗� [p̂2]∗�

]
.

B. Definition of Coordinate Frames

To describe the motion of spacecraft in the entry phase,
the following five coordinate frames are defined as below
and the relationship between them is shown in Fig. 1.

1) Inertial Coordinate Frame I − OIXIYIZI : The ori-
gin OI locates at the center of Mars, OIZI points to the North
Pole direction. OI XI and OIYI are in the Equatorial plane and
determined by the right-hand rule.

Fig. 1. Definition of coordinate frames.

2) Mars-Fixed Coordinate Frame M − OMXMYMZM:
The origin OM locates at the center of Mars, OMZM points
to the North Pole direction, OMXM and OMYM rotate with
Mars.

3) Vehicle-Pointing Coordinate Frame P − OPXPYPZP:
The origin OP locates at the center of Mars, the XP-axis-
positive is pointing along the vehicle’s position vector �r;
the YP-axis locates in the equatorial plane, and is perpen-
dicular to the XP-axis and parallel to the East of vehicle’s
subsatellite point; and the ZP-axis is perpendicular to the
XP − YP plane with the positive direction determined by the
right-hand rule.

4) Body Coordinate Frame B − OBXBYBZB: The ori-
gin OB locates at the vehicle’s center of gravity, the XB-
axis-positive points the nose of the vehicle in the plane of
symmetry; the ZB-axis is perpendicular to the XB-axis, in
the plane of symmetry of the vehicle; and the YB-axis is
perpendicular to the XB − ZB plane with positive determined
by the right-hand rule.

5) Wind Coordinate Frame W − OW XWYW ZW : The
origin OW locates at the vehicle’s center of gravity, the
XW -axis-positive is in the direction of the velocity vector
of the vehicle relative to the air; the YW -axis positive is in
the same direction as the projection of the lift force on the
plane determined by XP and velocity of the vehicle, and
the ZW -axis is perpendicular to the XW − YW plane with the
positive direction determined by the right-hand rule.

III. PROBLEM FORMULATION

A. Dual-Quaternion-Based Kinematics and Dynamics of
Atmospheric Entry Vehicle

The 6-DoF equations of motion based on dual quater-
nions over a spherical, rotating Mars are introduced in the
following:

1) 6-DoF Kinematics: We use the following dual
quaternion components to denote the rotation and trans-
lation between inertial frame I and body frame B:

q̃IB = q̂rIB + εq̂dIB = q̂rIB + ε

(
1

2
r̂I ⊗ q̂rIB

)
(7)
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where q̂dIB ∈ H denotes a translation r̂I ∈ H, expressed in
the inertial frame I, followed by a rotation q̂rIB ∈ H with
‖q̂rIB‖ = 1. Accordingly, the time derivatives of the dual
quaternion elements can be written as

˙̃qIB = 1

2
q̃IB ⊗ w̃IB (8)

where w̃IB = ω̂IB + εv̂I ∈ Q, ω̂IB and v̂I are pure quater-
nions representing the angular velocity and the linear ve-
locity of the vehicle, respectively. For the simplicity of
notation, q̃IB, q̂rIB, q̂dIB, w̃IB, and ω̂IB are written as q̃, q̂r,
q̂d, w̃, and ω̂, respectively.

2) 6-DoF Dynamics: The vehicle dynamics during the
entry phase is expressed as

d

dt
(mvB) = mv̇B + ωB × mvB = GB + FB (9a)

d

dt
(JωB) = Jω̇B + ωB × mωB = lw×FB+MB =MN

(9b)

where ωB ∈ R3×1 is the projection of angular velocity of
the vehicle on the body frame, vB ∈ R3×1 is the projection
of velocity on the body frame, m denotes the mass of the
vehicle, lw ∈ R3×1 denotes the constant body-frame vector
from the vehicle’s center of mass to the aerodynamic center,
FB ∈ R3×1 represents the aerodynamic force expressed in
the body frame, GB ∈ R3×1 is the gravity expressed in the
body frame, J ∈ R3×3 represents the general inertia matrix
of the entry vehicle, MB ∈ R3×1 is the vector of moments
generated by actuators, and MN = [Mx,My,Mz]T ∈ R3×1

is the vector of net moments that are handled as the control
vector in the entry trajectory optimization problem. Com-
bining (9a) and (9b), we can rewrite the dynamics using
dual quaternions [18] as

Jd ˙̃w + w̃ � Jdw̃ = �F̃B + G̃B + M̃N (10)

where

Jd =
⎡
⎣ 04×4 mI4

1 01×3

03×1 J 04×4

⎤
⎦

8×8

∈ R8×8

� =
[

08×5
l×w

05×3

]
8×8

∈ R8×8

F̃B = 0̂ + ε
[
0,FT

B

]T ∈ Q, G̃B = [0,GT
B

]T + ε(0̂) ∈ Q

M̃N = 0̂ + ε
[
0,MT

N

]T ∈ Q.

Here, In is an n-dimensional identity matrix. Based on the
definition of coordinate frames, the gravity and aerody-
namic forces can be easily described in the vehicle-pointing
frame P and the wind frame W, respectively. Specifically,
the dual quaternion of gravity force in P is written as
G̃P = 0̂ + ε[0,GT

P ]T ∈ Q, where GP = [−mg, 0, 0]T and
g ∈ R is the gravitational acceleration. Then, we have
the relationship between G̃P and G̃B, expressed as G̃B =
q̃∗

pb ⊗ G̃P ⊗ q̃pb, where q̃pb ∈ Q denotes the rotation and
translation from P frame to B frame. Similarly, the dual
quaternion of the aerodynamic forces in the wind frame W
can be written as

F̃W = 0̂ + ε
[
0,FT

W

]T ∈ Q (11a)

FW = [−D,Y, L]T (11b)

=
[
−1

2
CDρSV 2,

1

2
CYρSV 2,

1

2
CLρSV 2

]T

(11c)

where ρ ∈ R is the Mars atmosphere density, L ∈ R,Y ∈ R,
and D ∈ R are the lift, side, and drag forces, S ∈ R is
the reference area, V ∈ R is the speed of vehicle rela-
tive to Mars’ atmosphere, and CL ∈ R, CD ∈ R, CY ∈ R

denote the lift, side, and drag coefficients of the vehicle,
respectively. Moreover, CL and CD are linear and quadratic
functions sin α, where α is the angle of attack, expressed as

CL = cl0 + cl1 sin α, CD = cd0 + cd1 sin α + cd2 sin2 α

(12)

where cl0 , cl1, cd0 , cd1, and cd2 are constant coefficients.
Similarly, CY is a linear function of sin β, where β is the
side slip angle.

CY = cy0 + cy1 sin β (13)

where cy0 and cy1 are constant coefficients. Then, transform-
ing F̃W from the wind frame W to the body frame B, we
have

F̃B = q̃bw ⊗ F̃W ⊗ q̃∗
bw (14)

where q̃bw ∈ H denotes the dual quaternion from B frame
to W frame, which is defined as

q̃bw = q̂bw + ε

(
1

2
l̂w ⊗ q̂bw

)
(15)

where l̂w ∈ H is a pure quaternion expressed as l̂w =
[0, lTw]T , and the position vector lw of the aerodynamic center
is assumed to be constant in the body frame. In fact, all
four components in quaternion q̂bw are determined by two
rotational angles (α, β ), expressed as

q̂bw =

⎡
⎢⎢⎢⎣

qbw1

qbw2

qbw3

qbw4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

cos α2 cos β2
sin α

2 cos β2
cos α2 sin β

2

− cos α2 sin β

2

⎤
⎥⎥⎥⎦ . (16)

Then, F̃W can be expressed with respect to the dual angular
velocity w̃, written as

F̃W = 1

2
SρV 2� = 1

2
Sρ‖Aw̃‖2�̃ (17)

where �̃ = 0̂ + ε[0,�T ]T ∈ Q, � =
[−CD,CY ,CL]T , and A =

[
04×404×4

04×4I4

]
8×8

∈ R8×8.

B. Operational and Mission Constraints

For safe operation, specific operational and mission
constraints during the entry phase are considered, including
the following:

1) Stagnation-point convective heating load constraint

Q̇ = kQ

√
ρ

Rnose
V 3.15 ≤ Q̇max (18)
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where Rnose ∈ R is the nose radius of the vehicle,
kQ ∈ R is a constant depending on the composition
of the Martian atmosphere, and Q̇max ∈ R denotes
the allowable peak heating rate. This inequality con-
strains the heating rate at a stagnation point on the
surface of the vehicle with a curvature radius Rnose
[6].

2) Normal load constraint

‖F̂W ‖
mg0

=
√

L2 + D2 + Y 2

mg0
≤ nmax (19)

where nmax ∈ R is the load factor for the allowable
normal load on the surface of the entry vehicle, and
g0 ∈ R is the gravitational acceleration on the surface
of Mars.

3) In this article, instead of using the conventional bank
angle control with one control variable or direct force
control with two control variables, we consider the
control on the net moments (with three control vari-
ables) to further improve the flexibility in searching
for the optimal entry trajectories. Then, the angle
of attack and side slip angle are unfixed during the
entry phase. Therefore, nonreaction control systems
are assumed to be implemented in the entry vehicle
that employs the aerodynamic surfaces, referred to
as flaps, as the actuation systems [42], [43]. Then,
the moments generated by the actuators are flight
condition dependent and physically bounded, which
indicates that the net moments are also bounded. We
assume constant upper and lower bounds on the net
moments such that

ML
x ≤ Mx ≤ MU

x , ML
y ≤ My ≤ MU

y

ML
z ≤ Mz ≤ MU

z . (20)

Physically, the bounds on the net moment con-
strain the angular accelerations to avoid the dramatic
changes of the vehicle’s angular velocities and the
attitudes, which prevents loss of control of the entry
vehicle.

4) To avoid flow impingement and large radiative heat-
ing effects on the payload at a high angle of attack
and side slip angle, a box constraint is considered for
α and β, respectively,

SL
α ≤ sin α ≤ SU

α , SL
β ≤ sin β ≤ SU

β . (21)

C. Additional Constraints

According to (7), the dual quaternion q̃ can be divided
into two parts q̂r and q̂d, where q̂r represents the rotation
from I frame to B frame. Here, we introduce q̂im ∈ H to
represent the rotation from I frame to M frame, q̂mp ∈ H

to represent the rotation from M frame to P frame, and
q̂pb ∈ H to represent the rotation from P frame to B frame.
Then, according to the Euler’s rotation theorem, we have

q̂im ⊗ q̂mp ⊗ q̂pb = q̂r (22)

where q̂im = [cos(�t/2), 0, 0, sin(�t/2)]T , � is the rota-
tional speed of Mars, and t is the entry time. By introducing
the dual quaternion term q̂im, the Mars rotation effects are

included in the dynamics without involving trigonomet-
ric functions. Next, we try to find the constraints on q̂mp
based on the expression of r̂M , which can be expressed as
r̂M = [0, rT

M ]T . Here, rM ∈ R3 is the vector from the origin
of the M frame to the origin of the B frame projected on the
M frame, and it can be expressed as rM = [rM1, rM2 , rM3 ]T .
According to (7), r̂M can be written as

r̂M = q̂∗
im ⊗ r̂I ⊗ q̂im (23)

where r̂I = 2q̂d ⊗ q̂∗
r . Thus, we can obtain r = ‖r̂I‖2 = ‖2 ·

q̂d‖. Here, r ∈ R is the radial distance between the gravity
center of the vehicle and the center of Mars.

In addition, when considering the Mars rotation, there
exists a relationship between the linear velocity v̂I and the
velocity relative to the atmosphere, i.e., v̂M, in the M frame
as

v̂M = v̂I − ω̂m ⊗ r̂I (24)

where ω̂m = [0, 0, 0, �] is the quaternion that denotes the
angular velocity between I frame and M frame. By pro-
jecting the velocity v̂M on the W frame, we have

v̂M = q̂iw ⊗ v̂W ⊗ q̂∗
iw (25)

where v̂W = [0,V, 0, 0]T and q̂iw is determined by

q̂iw = q̂r ⊗ q̂bw. (26)

Besides, according to the definition of the coordinate
frames, the coupling relationships for velocity vB, angle of
attack α, and side-slip angle β can be written as

vBx sin α = − vBz cosα (27)

vBxy sin β = vBy cosβ (28)

where vB = [vBx, vBy, vBz], v2
Bxy = v2

Bx + v2
By, and

vBx, vBy, vBz are also components of w̃.
It is obvious that q̃, w̃, F̂B, ĜB, q̂pb, r̂M, and q̂bw can

all be updated by constraints (7)–(17) and (22)–(28). Here,
we also need to show that q̂mp can also be updated based on
q̃, w̃, F̂B, ĜB, q̂pb, r̂M, and q̂bw. Moreover, by introducing
q̂mp, we have

r̂M = q̂mp ⊗ r̂P ⊗ q̂∗
mp. (29)

From (29), it holds that

r̂M = q̂mp ⊗ r̂P ⊗ q̂∗
mp =

⎡
⎢⎢⎢⎣

0

r
(

q2
mp1

+q2
mp2

−q2
mp3

−q2
mp4

)
2r
(
qmp1

qmp4
+qmp2

qmp3

)
2r
(
qmp2

qmp4
− qmp1

qmp3

)

⎤
⎥⎥⎥⎦.

Since q̂mp is determined by the longitude θ ∈ R and latitude
φ ∈ R. Then, q̂mp can be written as

q̂mp =
[
cos θ2 cos φ2 , sin θ

2 cos φ2 , sin θ
2 sin φ

2 ,−cos θ2 sin φ

2

]T
.

(30)

Substituting (30) into r̂M , we can obtain the following
relationships:

rM1 = r cosφ, rM2 = −r cos θ sin φ,

rM3 = − r sin θ sin φ. (31)
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Then, φ and θ can be determined by

φ = arccos
( rM1

r

)
, θ = arctan

(
− rM3

rM2

)
(32)

with given θ and φ, q̂mp is determined accordingly.

D. Formulation of the Entry Trajectory Optimization
Problem

In this subsection, we organize the aforementioned con-
straints during the entry phase and formulate the entry tra-
jectory optimization problem. The objective is to minimize
the terminal speed at a specified terminal altitude while
satisfying all constraints stated previously. Mathematically,
the entry trajectory optimization problem is formulated as

min
Mx,My,Mz,t f

‖Aw̃(t f )‖
subject to

˙̃q = 1

2
q̃ ⊗ w̃, Jd ˙̃w + w̃ � Jdw̃ = �F̃B + G̃B + M̃B

G̃B = q̃∗
pb ⊗ G̃P ⊗ q̃pb, q̃ = q̃im ⊗ q̃mp ⊗ q̃pb

F̃B = q̃∗
wb ⊗ F̃W ⊗ q̃wb, F̃W = 1

2
Sρ‖Aw̃‖2�

(18), (19), (20), (21), (12), (13), (27), (28)

q̃(t0) = q̃0, w̃(t0) = w̃0 ‖q̃(t f )‖ = R f (33)

where G̃P = [01×4, 0,−mg, 0, 0]T , t0 and t f are, respec-
tively, the starting and final time of the entry phase, and R f

is the terminal radial distance.
Due to the specific entry trajectory optimization prob-

lem formulated in (33), its optimal control profile has unique
properties.

PROPOSITION III.1 In the 6-DoF dual-quaternion-based en-
try trajectory optimization problem formulated in (33), the
optimal solution of each moment component, Mx, My, and
Mz, has a bang–bang control profile.

PROOF The details of the proof can be found in
Appendix A.

Although Proposition III.1 proves that the optimal solu-
tion has bang–bang control profiles, the existence of nonlin-
ear constraints makes it difficult to derive an explicit optimal
solution using Pontryagin’s maximum principle. Therefore,
a hybrid ADMM is proposed to solve the entry trajectory
optimization problem.

E. Equivalent Formulation Based on Flight-Path Coordi-
nates

In order to demonstrate the correctness and advantages
of the formulation based on dual quaternion, we reformulate
the entry trajectory optimization problem in (33) using the
traditional entry dynamical model based on the flight-path
coordinates. The translational motion of an entry vehicle
based on the flight-path coordinates is reformulated as
follows:

ṙ = V sin(γ ), θ̇ = V cos γ cosψ

r cosφ
, φ̇ = V cos γ sinψ

r

V̇ = − D − V sin γ

r2

− r�2 cosφ(cosφ sin γ + sin φ sinψ cos γ )

γ̇ = 1

V

(
L cos σ + Y sin σ+

(
V 2 − 1

r

)
cos γ

r

)

+2� cosφ cosψ+�2rcosφ(cosφ cos γ−sin φ sinψ sin γ )
V

ψ̇ = L sin σ − Y cos σ

V cos γ
− V cos γ cosψ tan φ

r

− 2�(sinψ cosφ tan γ + sinφ) − �2r sin φ cosφ cosψ
V cos γ .

(34)

In the traditional entry dynamical model based on the
flight-path coordinates, only the translational motion is
considered. To ensure the equivalence of the two model,
the rotational motion formulations for the two problems
are both represented by quaternions in (9b) and (11a)–(16).
Accordingly, the time derivatives of the quaternion q̂r can
be written as

˙̂qr = 1

2
q̂r ⊗ ω̂B. (35)

Here, we introduce q̂pw ∈ H to represent the rotation from
P frame to W frame. Based on the updated angles γ , ψ ,
and σ in (34), the quaternion q̂pw can be represented by

q̂pw =

⎡
⎢⎢⎢⎣

cosψ
0
0

sinψ

⎤
⎥⎥⎥⎦⊗

⎡
⎢⎢⎢⎣

cos γ
0

sin γ
0

⎤
⎥⎥⎥⎦⊗

⎡
⎢⎢⎢⎣

cos σ
sin σ

0
0

⎤
⎥⎥⎥⎦ . (36)

According to (16), (22), (26), (30), (36), angle of attack α
and side-slip angle β can be determined. Then, the 6-DoF
entry trajectory optimization problem based on flight-path
coordinates can be formulated as

min
Mx,My,Mz,t f

V (t f )

subject to

(34), (35), (36), (9b), (11a) − (16), (22), (26), (30)

(18), (19), (20), (21), (12), (13), (27), (28),

r(t0) = r0,V (t0) = V0, θ (t0) = θ0, φ(t0) = φ0, γ (t0) = γ0

ψ (t0) = ψ0, q̂r (t0) = q̂r0, ω̂B(t0) = ω̂0, r(t f ) = r f .

(37)

The 6-DoF entry trajectory optimization problem in (37)
will be solved using an NLP solver for the comparison
purpose, which will be presented in Section VI.

IV. PROBLEM CONVERSION INTO A QCQP

A. Discretization and Conversion Into a QCQP

In the dual-quaternion-based entry trajectory optimiza-
tion problem formulated in (33), most constraints are formu-
lated as quadratic equalities or inequalities, except for those
involving nonpolynomial terms, e.g., the exponential terms
in the heating load constraint and the atmosphere density
function. These nonpolynomial functions will be approx-
imated by high-order polynomials with negligible fitting
errors. Specifically, the normalized nonlinear atmosphere
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density is approximated by a six-order polynomial function
with the maximum error less than 1e-4, expressed as

ρ =
n=6∑
i=0

pih
i (38)

where pi, i = 0, . . . , 6, are the fitting coefficients, and
h = (r − Rm) = ‖q̃‖ − Rm is the altitude.

For the maximum heating rate constraint in (18), it can
be rewritten as

V ≤ 3.15

√
Q̇max

kQ
√
ρ/Rnose

:= Vmax. (39)

Similarly, Vmax can be approximated by a fourth-order poly-
nomial function

Vmax =
n=4∑
i=0

uih
i (40)

where ui, i = 0, . . . , 4, are the fitting coefficients.
Through the approximations in (38) and (40), the entry

trajectory optimization problem in (33) can be reformulated
as a polynomial optimal control problem. It is known that
a polynomial optimal control problem can be converted
into a polynomial programming problem via discretiza-
tion techniques [44]. Then, by introducing intermediate
variables and quadratic constraints, it can be equivalently
reformulated as a homogeneous QCQP, and more details
about the reformulation of QCQP can be found in [38]
and [44]. The general expression of QCQP is written as

min
z∈Rn

zT A0z

subject to zT Aiz = ai, i ∈ E
zT B jz ≤ b j, j ∈ I (41)

where z ∈ Rn is the unknown vector to be determined, the
coefficient matrices A0 ∈ Rn×n, Ai ∈ Rn×n, i ∈ E , and B j ∈
Rn×n, j ∈ I, are real systematic and not necessarily to be
positive semidefinite. E and I denote the indices sets of
equality and inequality constraints, respectively. Due to the
indefiniteness of Ai or B j , (41) is generally a nonconvex
problem and NP-hard to solve. In the following, a hybrid
ADMM is proposed to solve large-scale nonconvex QCQPs.

V. HYBRID ADMM FOR NONCONVEX QCQPS

A. Framework of Hybrid ADMM

To solve the nonconvex QCQPs, (41) is first equiva-
lently transformed into a consensus-constrained optimiza-
tion problem, which is expressed as

min
z,x∈Rn

xT A0z

subject to xT Aiz = ai, i ∈ E
zT B jx ≤ b j, j ∈ I
z = x. (42)

Obviously, the consensus constraint z = x ensures the
equivalence between problems (41) and (42). Let μ ∈ R|E |,
λ ∈ R|I|, and ν ∈ Rn be the Lagrange multipliers associated
with the equality constraints, inequality constraints, and the

consensus constraint in (42), respectively. Here, |E | and |I|
denote the cardinalities of E and I, respectively. For nota-
tional convenience, we denote � = [νT ,μT ,λT ]T . Next, a
logical function associated with the inequality constraint,
zT B jx ≤ b j, j ∈ I, is defined as follows:

� j (x, z, λ j ) =
{

0, λ j + ζ
(
xT B jz − b j

) ≤ 0
1, λ j + ζ

(
xT B jz − b j

)
> 0

(43)

where ζ denotes a positive constant. By employing (43)
to handle the inequalities in (42), we have the augmented
Lagrangian for (42), written as

Lp(x, z, �) = xT A0z + νT (x − z) + ζ1

2
‖x − z‖2

+
∑
i∈E

(
μi
(
xT Aiz − ai

)+ ζ2

2

∥∥xT Aiz − ai

∥∥2
)

+
∑
j∈I

� j

(
λ j
(
xT B jz−b j

)+ ζ3

2

∥∥xT B jzk −b j

∥∥2
)

(44)

where p = [ζ1, ζ2, ζ3] denote the collection of the penalty
coefficients associated with all the augmented terms.

To satisfy the consensus constraint x = z, two penalty
terms are introduced in the augmented Lagrangian in (44).
The customized ADMM in [37], [38], and [39] requires
many iterations to drive x to z with high accuracy, especially
when the initial guess is not close to the optimal solution
and the penalty coefficients associated with (x − z) and
‖x − z‖2 are not significantly large. However, assigning
large penalty coefficients for the associated (x − z) and
‖x − z‖2 terms may make the augmented Lagrangian ill-
balanced. To obtain fast convergence without sacrificing
the optimality value, a two-stage updating law is proposed
for the primary variables x and z. The first stage follows
the original ADMM framework [45] that updates x and
z alternatively. The second stage forces x and z to equal
to their average after the primary updates. Then, a hybrid
ADMM is expressed as

xk+1 = arg min
x

Lpk

(
x, zk, �k

)
(45a)

zk+1 = arg min
z

Lpk

(
xk+1, z, �k

)
(45b)

If k ≥ kmax1 or xk satisfies a bounded error condition:

xk+1 = zk+1 = xk+1 + zk+1

2
(45c)

νk+1 = νk + ζ k
1

(
xk+1 − zk+1

)
(45d)

μk+1
i = μk

i +ζ k
2

((
xk+1

)T
Aizk+1−ai

)
∀i ∈ E (45e)

λk+1
j = max

{
0, λk

j + ζ k
3

((
xk+1

)T
B jzk+1 − b j

)}
∀ j ∈ I (45f)

where the bounded error condition refers to that the relative
residuals of equality, inequality, and consensus constraints
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are smaller than a constant δ as

‖ξ‖1 =

∥∥∥∥∥∥∥∥∥

∑
i∈E

‖(xk+1 )T Aizk+1−ai‖
‖a‖ ,∑

j∈I
‖(xk+1 )T B j zk+1−b j‖

‖b‖ ,
‖x−z‖
‖x‖

∥∥∥∥∥∥∥∥∥
1

≤ δ. (46)

In addition, the penalty coefficients ζ k
1 , ζ

k
2 , and ζ k

3 are as-
signed as nondecreasing positive sequences based on the
following updating rules:

ζ k+1
1 =

{
βζ k

1 , ‖xk+1 − zk+1‖ ≥ τ‖xk − zk‖
ζ k

1 , otherwise
(47a)

ζ k+1
2 =

⎧⎨
⎩
βζ k

2 , ‖(xk+1)T AEzk+1 − a‖
≥ τ‖(xk )T AEzk − a‖

ζ k
2 , otherwise

(47b)

ζ k+1
3 =

⎧⎨
⎩
βζ k

3 , ‖[(xk+1)T BIzk+1 − b]+‖
≥ τ‖[(xk )T BIzk − b]+‖

ζ k
3 , otherwise

(47c)

where β ≥ 1 and τ are positive constants, and AE is defined
as

xT AEz − c =

⎡
⎢⎢⎢⎢⎣

xT A1z − a1

xT A2z − a2
...

xT A|E |z − a|E |

⎤
⎥⎥⎥⎥⎦ ∈ R|E |×1

AEx =
[
A1x,A2x, . . . ,A|E |x

]
∈ R|E |×n. (48)

Similar definition is made for BI such that BIx =
[B1x,B2x, . . . ,B|I|x] ∈ R|I|×n and [(xk+1)T BIzk+1 −
d]+ := max{(xk+1)T BIzk+1 − b,−λk+1

j /ζ k
3 }.

For the x-update in (45a), (44) turns out to be a
ζ k

1 −strongly convex function when z = zk and� = �k are
given. Thus, by applying the first-order optimality condi-
tions of (44), we can derive the optimum of subproblem
(45a) as

∂Lpk

(
x, zk, �k

)
∂x

= A0zk + νk + ζ k
1

(
x − zk

)
+
∑
i∈E

(
μk

i Aiz
k +ζ k

2

(
xT Aiz

k −ai
)

Aiz
k
)

+
∑
j∈I
�x

k
j

(
λk

jB jz
k +ζ k

3

(
xT B jz

k −b j
)
B jz

k
)

= 0 (49)

where �x
k
j = � j

(
xk, zk, λk

j

)
, j ∈ I, denotes the logical

function associated with the inequality constraint j at the kth
step. Rearranging (49), we can find the analytical solution
of the x-update, expressed as

xk+1 = (Qk
x

)−1
tk
x (50)

where Qk
x and tk

x are defined as

Qk
x = ζ k

1 I +
∑
i∈E

ζ k
2

(
Aizk

) (
Aizk

)T

+
∑
j∈I

�x
k
jζ

k
3

(
B jzk

) (
B jzk

)T
(51a)

tk
x = − A0zk − νk + ζ k

1 zk −
∑
i∈E

((
μk

i − ζ k
2 ai
)

Aiz
k
)

−
∑
j∈I

(
�x

k
j

(
λk

j − ζ k
3 bi
)

B jz
k
)

(51b)

where Qk
x is always a positive definite matrix by setting all

positive elements in pk . Similarly, with a fixed xk+1 and
�k , the analytical solution of the subproblem (45b) for the
z-update can be written as

zk+1 = (Qk
z

)−1
tk
z (52)

where

Qk
z = ζ k

1 I +
∑
i∈E

ζ k
2

(
Aixk+1

) (
Aixk+1

)T
+
∑
j∈I

�z
k
jζ

k
3

(
B jx

k+1
) (

B jx
k+1
)T

(53a)

tk
z = − A0xk+1 + νk + ζ k

1 xk+1

−
∑
i∈E

((
μk

i − ζ k
2 ai
)

Aixk+1
)

−
∑
j∈I

(
�z

k
j

(
λk

j − ζ k
3 bi
)

B jxk+1
)

(53b)

�z
k
j = � j

(
xk+1, zk, λk

j

)
. (53c)

Since it is straightforward to update �k in (45), with
the closed-form solutions in (50) and (52) derived for the
subproblems (45a) and (45b), the hybrid ADMM for a
nonconvex QCQP in (41) is summarized in Algorithm 1.

B. Convergence Analysis of the Hybrid ADMM Algo-
rithm

This section provides the convergence analysis of the
hybrid ADMM. We first describe the “bounded relative
error” of the solutions from (45a) and (45b), and then,
show that this condition can be satisfied before applying
the consensus updating laws. Second, we prove that after
employing the consensus updates in the second stage, the
hybrid ADMM will convergence to a stationary point with
a linear convergence rate.

DEFINITION V.1 (Bounded error condition). Given xk, zk ,
and�k , we say that the subproblems in (45a) and (45b) are
solved with a bounded relative error if there is a constant c
such that

0 = ∂L
∂z

(
xk+1, zk+1, �k+1

)+ δk+1 (54a)∥∥∥δk+1
∥∥∥ ≤ c

(∥∥∥νk+1 − νk
∥∥∥+

∥∥∥μk+1 − μk
∥∥∥

+
∥∥∥�k

� ◦ (λk+1 − λk
) ∥∥∥) (54b)

where “◦” denotes the element-wise product.

Remarkably, we do not need to check this condition at
each iteration. Next, we show that for a fixed number of
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Algorithm 1: Framework of Hybrid consensus
ADMM for QCQPs.

Input: A0, Ai, ai, i ∈ E , B j, b j, j ∈ I, and
algorithmic parameters β, τ , ε, δ

Output: Vectors x and z
Initialization: x0 = z0, �0 and penalty coefficients
p0

1: /� The first stage �/
2: for k = 0, 1, 2, . . ., kmax1 do
3: Compute �x

k
j according to xk, zk, �k;

4: Update xk+1 using (50) with zk, �k;
5: Compute �z

k
j according to xk+1, zk, �k;

6: Update zk+1 using (52) with xk+1, �k;
7: Update � using (45d), (45e), and (45f);
8: Compute ξ =[∑

i∈E ‖(xk+1 )T
Aizk+1−ai‖

‖a‖ ,

∑
j∈I ‖(xk+1 )T

B j zk+1−b j‖
‖b‖ ,

‖x−z‖
‖x‖

]
9: if ‖ξ‖1 ≤ δ then

10: the bounded error is satisfied, break;
11: end if
12: Update penalty coefficients using (47);
13: end for
14: /� The second stage �/
15: Reinitialize x0 = z0 = xk+zk

2 , �0, and p0.
16: for k = 0, 1, 2, . . . do
17: Compute �x

k
j according to xk, zk, �k;

18: Update xk+1 using (50) with zk, �k;
19: Compute �z

k
j according to xk+1, zk, �k;

20: Update zk+1 using (52) with xk+1, �k;
21: Apply the consensus: xk+1 = zk+1 = xk+1+zk+1

2
22: Update � using (45d), (45e), and (45f);
23: Calculate the error vector ξ =[∑

i∈E ‖(x̂k+1 )T
Ai ẑk+1−ai‖

‖a‖ ,

∑
j∈I ‖(xk+1 )T

B j zk+1−b j‖
‖b‖

]
24: if ‖ξ‖1 ≤ ε then
25: break;
26: end if
27: Update penalty coefficients using (47);
28: k = k + 1
29: end for

iterations, there is a constant c such that the condition is
satisfied. We start with the following two assumptions.

Assumption V.2 The objective function and constraints of
problem (41) are all twice differentiable. Moreover, the
objective function is lower bounded and there exists at least
one feasible solution for problem (41).

Assumption V.3 In problem (41),
∑

i∈E Ai has a full
column rank, that is, for any nonzero vector x ∈ Rn,
rank(

∑
i∈E Aix) ≥ |E |. Moreover,

∑
j∈I B j also has a full

column rank, that is, rank(
∑

j∈I B jx) ≥ |I|.
THEOREM V.4 Let Assumptions V.2 and V.3 hold, and
{xk, zk, �k} be the sequence generated by ADMM with
k < kmax1 , then the solution at a given step 1 ≤ k̂ < kmax1

is an approximate solution to the original problem with a
bounded relative error stated in (54).

PROOF In the first stage, the first-order optimality
condition of (45b) at the kth step can be writ-
ten as 
zLpk (xk+1, zk+1, �k ) = 0. Then, let δk+1 =

zLpk (xk+1, zk+1, �k ) − 
zLpk (xk+1, zk+1, �k+1), and we
have∥∥δk+1

∥∥
=
∥∥∥
z Lpk

(
xk+1, zk+1, �k

)
− 
zLpk

(
xk+1, zk+1, �k+1

)∥∥∥
=
∥∥∥ (νk − νk+1

)+ (μk − μk+1
)

AExk+1

+ (	z ◦ (λk − λk+1
)

BIxk+1
) ∥∥∥

≤
∥∥∥νk − νk+1

∥∥∥+
∥∥∥ (μk − μk+1

)
AExk+1

∥∥∥
+
∥∥∥ (	z ◦ (λk − λk+1

)
BIxk+1

) ∥∥∥
≤ c
(∥∥∥νk − νk+1

∥∥∥+
∥∥∥ (μk − μk+1

) ∥∥∥
+
∥∥∥	z ◦ (λk − λk+1

) ∥∥∥) (55)

where the first inequality holds due to the triangle in-
equality of norm, and the last inequality holds by taking
c = max{1, ‖AExk+1‖, ‖BIxk+1‖}. Let k = k̂ to complete
the proof.

Theorem V.4 guarantees that when k < kmax1 , the solu-
tions from Algorithm (1) satisfy the bounded conditions.
Next, we present the convergence proof for Algorithm (1)
after applying the consensus updates in (45c).

LEMMA V.5 Let the conditions in Assumption V.2 hold, and
let {xk, zk} and {xk+1, zk+1} be the sequences generated by
Algorithm 1 in the second stage. Then, at the kth iteration
of primal updates, we have

Lpk

(
xk, zk, �k

)− Lpk

(
xk+1, zk+1, �k

)
≥ κk

x

2

∥∥xk − xk+1
∥∥2 + κk

z

2

∥∥zk − zk+1
∥∥2

(56)

where the constants κk
x > ζ k

1 > 0 and κk
z > ζ k

1 > 0 are in-
dependent of �k .

PROOF At the kth iteration, for the x-update in (45a) and
z-update in (45b), the Hessian matrices of the augmented
Lagrangian are expressed as


2
x L
(
xk+1, zk, �k

) = ζ k
1 I +

∑
i∈E

ζ k
2

(
Aizk

) (
Aizk

)T
+ ζ k

3

∑
j∈I

�k
x j

(
B jz

k
) (

B jz
k
)T

(57a)


2
z L
(
xk+1, zk+1, �k

)=ζ k
1 I +

∑
i∈E

ζ k
2

(
Aix

k+1
) (

Aix
k+1
)T

+ ζ k
3

∑
j∈I

�k
z j

(
B jx

k+1
) (

B jx
k+1
)T
. (57b)

With [ζ k
1 , ζ

k
2 , ζ

k
3 ] being nondecreasing positive sequences,

there exist positive constants κx and κz such that 
2
xL �
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κxI � ζ1I and 
2
zL � κzI � ζ1I hold for all x, z ∈ Rn.

Meanwhile, the positive definiteness of Qk
x and Qk

z ensures
the feasibility of these subproblems. Therefore, there exist
the following inequalities for the x-update in (45a) with a
given pair (zk, �k) at the kth step:

Lpk

(
xk, zk, �k

)− Lpk

(
xk+1, zk, �k

)
≥ 〈
xL

(
xk+1, zk, �k

)
,
(
xk − xk+1

)〉
+ κk

x

2

∥∥xk − xk+1
∥∥2

= κk
x

2

∥∥xk − xk+1
∥∥2 ≥ ζ k

1

2

∥∥xk − xk+1
∥∥2

(58)

where the first inequality holds due to the strong convexity
of Lpk (x, zk, �k ) with respect to x, and the equality holds
due to the first-order optimality condition of (45a) with
respect to xk+1. Similarly, the following inequality holds
for the z-update in (45b) with a given pair (xk+1, �k) at the
kth step,

Lpk

(
xk+1, ẑk, �k

)− Lpk

(
xk+1, zk+1, �k

)
≥ κk

z

2

∥∥ẑk − zk+1
∥∥2
. (59)

Then, by adding (58) and (59), we obtain the condition in
(56), which completes the proof.

To distinguish xk+1 and zk+1 in (45a) and (45b) from
those obtained after applying the consensus updates in
(45c), we denote the average solution after applying (45c)
as

x̂k+1 = ẑk+1 = xk+1 + zk+1

2
. (60)

Let d∗ denote the dual optimal value, and {xk, zk} and
{x̂k, ẑk} be the sequences generated by Algorithm 1 in the
second stage optimization. Denote a dual function at the kth
step as d (�) = Lpk (x̂k, ẑk, �), which is almost everywhere
differentiable with respect to �. Moreover, for given x̂ and
ẑ, we have

∇μd (�) = x̂T AE ẑ − a (61a)

∇λd (�) = 	 ◦ (x̂T BI ẑ − b). (61b)

Then, the gap between the dual optimality d∗ and the
dual solution d (�k ) at the kth iteration can be defined as
�k

d := d∗ − d (�k ) = d∗ − Lpk (x̂k, ẑk, �k ). In addition,
the primal gap between the primal optimality and
the dual solution at the kth iteration is defined as
�k

p = Lpk (x̂k+1, ẑk+1, �k ) − d (�k ).
To establish the linear convergence of Algorithm 1, we

will introduce several lemmas for the bounded primal and
dual gaps.

LEMMA V.6 Let assumptions V.2 and V.3 hold, then there
exist positive scalars rk

1 and rk
2 such that

�k
d ≤rk

1

∥∥(x̂k )T AE ẑk −a
∥∥2+rk

2

∥∥	k
�◦((x̂k )T BI ẑk −b

)∥∥2

where 	k
� = 	(x̂k, ẑk, �k ). Moreover, there exist positive

scalars lk
1 and lk

2 independent of �k such that

�k
p ≤ lk

1

∥∥x̂k − xk+1
∥∥2 + lk

2

∥∥ẑk − zk+1
∥∥2
. (62)

PROOF This lemma demonstrates the primal gap and dual
gap at each iteration should be upper bounded. The details
of the proof can be found in Appendix B.

Based on the results in Lemma V.6, we further consider
the descent of primal and dual gaps at two adjacent iterations
as follows.

LEMMA V.7 Let assumptions V.2 and V.3 hold, then for
each k ≥ 1, there exists αk

1 and αk
2 such that

�k
d −�k−1

d ≤ − ζ k−1
2 + ζ k

2

2

∥∥∥(x̂k
)T

AE ẑk − a
∥∥∥2

− ζ
k−1
3

∥∥	k−1
�

∥∥−ζ k
3

∥∥	k
x

∥∥
2

∥∥∥(x̂k
)T

BI ẑk −b
∥∥∥2

(63a)

�k
p−�k−1

p ≤ − lk
1

∥∥x̂k − xk+1
∥∥2 − lk

2

∥∥ẑk − zk+1
∥∥2

+αk
1

∥∥(x̂k )T AE ẑk −a
∥∥2+αk

2

∥∥(x̂k )T BI ẑk −b
∥∥2
.

(63b)

PROOF See Appendix C. �
Then, the bounded primal and dual descent gaps can

be used to show the linear convergence rate result for the
hybrid ADMM.

THEOREM V.8 Let Assumptions V.2 and V.3 hold, and
all elements of {pk} be nondecreasing positive sequences.
Then, the sequence of iterates {x̂k, ẑk, �k} generated from
Algorithm 1 in the second stage converges linearly to an
optimal primal-dual solution for the problem (41).

PROOF The proof for Theorem V.8 can be found in
Appendix D. �

VI. SIMULATION

In this section, we present simulation results of the
dual-quaternion-based entry trajectory optimization prob-
lem solved by the hybrid ADMM algorithm. To verify the
improved computational performance, we also provide the
comparative results using the traditional entry dynamical
model based on flight-path coordinates and a commercial
NLP solver [46]. Another NLP solver, GPOPS II [47] has
been applied to the same problem. However, it was not able
to find a convergent solution. All simulation cases from the
hybrid ADMM were run in MATLAB environments on a
3.6-GHz Desktop with 32-GB RAM. The commercial NLP
solver has a MATLAB interface for setting the problem
inputs and optimized codes are generated to improve com-
putational efficiency, e.g., matrix sparsification, differential
algebraic equations, and direct calling C++/C subroutines.

A. Problem Settings

The simulation presented here uses the hypersonic in-
flatable aerodynamic decelerator (HIAD) in [9] as the entry
vehicle. HIAD has a symmetric shape without back shell
covers. The payload is protected by a large diameter heat
shield. Thus, the angle of attack and side-slip angle are con-
strained within −20◦ ≤ α ≤ 20◦ and −20◦ ≤ β ≤ 20◦ to
avoid flow impingement and large radiative heating effects
on the payload at a high angle of attack. In addition, the lift
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TABLE I
Parameters of the Entry Vehicle

TABLE II
Mission Settings and Boundary Conditions

TABLE III
Initial States of the Entry Phase

and drag coefficients of the vehicle, CL and CD, are obtained
from [48]. The parameters of the entry vehicle are listed
in Table I. In addition, the mission settings and boundary
conditions are listed in Table II.

Meanwhile, the initial states of the entry vehicle are
given in Table III.

In Table III, ωx, ωy, and ωz are the angular velocity
terms along the body x-, y-, z-axes, respectively. Note that
the attitude angles, including roll, pitch, and yaw, can be
determined from α, β, γ , ψ , and σ . Then, the initial states
of dual quaternions q̃(t0) = [q̂r(t0), q̂d(t0)]T can be obtained
via (7), (22), (30), and (31), and w̃(t0) = [ω̂(t0), v̂M (t0)]T ∈
Q, v̂I can be determined by (16), (24), (25), and (26)
accordingly.

B. Simulation Results

In this section, the simulation results using the dual-
quaternion-based model combined with the hybrid ADMM
algorithm and the traditional model combined with a com-
mercial NLP solver are presented. The precision of both
methods are compared by integrating the corresponding
dynamics forward using the obtained control moments to
find the terminal altitude and velocity and corresponding
errors. In addition, robustness of algorithm convergence
and cost values are compared for both methods. The entry
trajectory is discretized into 31 nodes for both methods.
For the dual-quaternion-based entry trajectory optimization
problem, the resulting QCQP formulation includes 3070 un-
known variables, associated with 3257 equality constraints
and 558 inequality constraints. In addition, the initial guess
x0 used for the first stage of the hybrid ADMM is generated
by giving a linear control M varying from the lower bounds
ML to the upper bounds MU , and then, integrating the
dynamics forward till the altitude reaches the specified
altitude R f . The same initial guess is set for the NLP method.

According to Proposition III.1, the optimal moment
components should be bang–bang profiles. Then, for the
initialization of the second stage in the hybrid ADMM,
the obtained controls from the first stage will be rounded
to bang–bang profiles by rounding positives to the upper
bound and negatives to the lower bound, as shown in Fig. 2,
where solutions from each iteration in the first stage are also
provided. Without considering the bang–bang constraint in
the first stage, it allows searching for a close to bang-bang
control profile in a larger searching space with more flexi-
bility. To improve the accuracy of the discretized trajectory
in the second stage, the time intervals before and after the
switching points in the bang–bang profiles are considered as
additional variables . In addition, to illustrate the accelerated
convergence rate in the second stage, the value of constraints
error ‖ξ‖1 along the iterations of the two stages are shown
in Fig. 3, where the second stage demonstrates the linearly
reducing ‖ξ‖1.

The time histories of control and state variables from
both methods are shown in Fig. 4. The duration of the entry
phase from the ADMM is 213.5 s, which is shorter than
the duration, 218.1 s, obtained from NLP. As shown in
Fig. 4, the control commands generated from the ADMM
have exact bang–bang control profiles, while the controls
from the NLP, e.g., My, are not exact bang–bang curves.
Compared to ADMM, NLP results may generate undesired
jitters, which is impractical for implementing an irregular
control inputs when it happens. To improve the precision
of the NLP solutions, we gradually increase the number of
discrete nodes. The maximum number of discrete notes for
the NLP that leads to a convergent solution is 61. Further
increasing the number of discrete nodes cannot obtain a
convergent solution. However, the bang–bang control pro-
file with 61 nodes generates more undesired jitters, as shown
in Fig. 4. Therefore, the following comparison between the
two methods uses the same 31 nodes.

Fig. 4(d) presents the time histories ofα andβ, where the
two algorithms yield similar curves. Similar observations
are found for the time history of the bank angle in Fig. 4(e),
as well as the time histories of pitch, yaw, roll angles in
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Fig. 2. Moment components from iterations of Stage 1 and final
rounded value. (a) Mx values. (b) My values. (c) Mz values.

Fig. 3. Constraints error along iterations of two stages. (a) Constraints
error along Stage 1. (b) Constraints error along Stage 2.

Fig. 4. Time histories of control and state variables from ADMM and
NLP solutions. (a) Mx time histories. (b) My time histories. (c) Mz time

histories. (d) α and β angles. (e) Bank, path, and heading angles. (f) Roll,
pitch, and yaw angles.

Fig. 5. Solution comparison from ADMM and NLP. (a) Altitude versus
velocity. (b) Optimized 3-D trajectories.

Fig. 4(f). These plots all start with the same trends, and
then, have small differences at the end. Fig. 5(a) presents
the altitude versus velocity curves, where the red-star curve
represents the solution from NLP, and the blue-star curve
represents the ADMM solution. The final velocity of the
NLP solution is 363.7 m/s at the altitude of 7.05 km.
However, the terminal velocity of the ADMM solution is
346.6 m/s at the altitude of 7.00 km, which is smaller than
the final velocity obtained from the NLP. Fig. 5(b) shows
the 3-D trajectories of the NLP and the ADMM solutions.
Through comparison of both methods, it indicates that the
results from the ADMM yield an exact bang–bang control
profile with a smaller terminal speed, which is feasible for
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TABLE IV
Comparison of the Terminal Altitude and Velocity Errors, Terminal Speed, and Computational Time for ADMM and NLP

implementation and benefits the following powered descent
phase due to the reduced terminal speed.

To quantify the precision, two indexes are introduced.
One is the terminal altitude error that is the error between
the terminal altitude in the discretized solution and the one
from integrating the entry dynamics using the optimized
control commands. The other index is the terminal velocity
error that represents the error between the terminal velocity
in the discretized solution and the one from integration
of dynamics using the optimized control solutions. The
integration employs 2000 uniformly spaced points to inter-
polate the discrete solutions from the NLP method. These
errors, together with the terminal speed and computational
time, for both methods are listed in Table IV. When us-
ing the same number of discrete nodes, the solution from
the ADMM using the dual-quaternion-based model leads
to much reduced errors at the terminal point compared
to those obtained from the NLP and the traditional dy-
namical model. The ADMM requires more computational
time in the MATLAB environments. However, according
to the computational performance comparison records, the
commercial NLP solver with optimized codes is generally
an order of magnitude times faster than MATLAB pro-
grams [46]. Furthermore, each iteration of the ADMM is
a closed-form update based on simple linear vector/matrix
operations, which does not require any optimization solver
and is highly implementable for real-time computations.
The most time-consuming step in each closed-form update
is the inverse operation of large-scale matrices. Our future
work will apply more efficient algorithms for computing
inverse of large-scale matrices.

Moreover, to examine the robustness of the proposed
method, simulations with varying initial conditions are
conducted for both the ADMM and the NLP. 500 ran-
dom cases were generated for robustness analysis. These
500 random cases have different initial altitude h0, ini-
tial velocity V0, and flight-path angle γ0 within the al-
titude range 100 km ≤ h(t0) ≤ 110 km, velocity range
4700 m/s ≤ V (t0) ≤ 4800 m/s, and flight-path angle range
12.8◦ ≤ γ (t0) ≤ 13.0◦. The 500 cases are generated around
the nominal initial altitude h0 = 100 km, initial velocity
V0 = 4700 m/s, and initial flight path angle γ0 = 12.9◦ with
disturbances, set as h(t0) = h0 + δh, V (t0) = V0 + δV , and
γ (t0) = γ0 + δγ , where δh, δV , and δγ follow a uniform
distribution with δh ∼ U [0, 10] km, δV ∼ U [0, 100] m/s,
and δγ ∼ U [0, 0.2] deg. All of these cases have a converged
solution using the ADMM, while 236 out of 500 cases fail
to converge using the NLP. The terminal altitude errors
and terminal velocity errors for converged solutions from
both methods are shown in Fig. 6(a), where 99% of the
solutions from the ADMM lead to terminal altitude errors
smaller than 200 m and terminal velocity errors smaller

Fig. 6. Error and terminal velocity comparison of NLP and ADMM for
the 500 cases. (a) Altitude and velocity errors. (b) Terminal velocity

comparison.

than 4 m/s. Compared to the ADMM, almost all of the 264
converged solutions obtained from the NLP have terminal
altitude errors larger than 200 m and 90% of the cases have
the terminal velocity error larger than 4 m/s. Moreover, we
compare the terminal speed for all cases integrated with
the controls solved by the ADMM and the NLP, shown
in Fig. 6(b), where 361 out of 500 cases obtain smaller
terminal speeds for the solutions from the ADMM than
those obtained from the NLP solver.

From the aforementioned comparison, when solving
the 6-DoF entry trajectory optimization problem, it can be
observed that the hybrid ADMM has advantages over the
commercial NLP solver in terms of robustness, precision,
and cost value. Moreover, the ADMM guarantees the exact
bang–bang control profile. The commercial NLP solver
with optimized codes has the advantage of reduced com-
putational time compared to the ADMM run in MATLAB
environments.

VII. CONCLUSION

This article examines the 6-DoF entry trajectory opti-
mization problem that considers both translation and rota-
tion motions. Instead of using the flight-path coordinates-
based dynamics, the unit dual quaternion is employed to rep-
resent rigid body dynamics to reduce the nonlinearity and
avoid the singularity of the rotational matrix. Then, combin-
ing the dual-quaternion-based dynamics and constraints on
control and states, the 6-DoF entry trajectory optimization
problem is formulated as a polynomial optimal control prob-
lem, which is then equivalently converted into a nonconvex
QCQP problem. A hybrid ADMM is developed to solve
the resulting QCQP with a guaranteed bounded error and a
linear convergence rate. Comparative simulation results are
provided to verify the advantages of the dual-quaternion-
based model and the hybrid ADMM algorithm in terms of
precision, implementability, and optimality when solving
the 6-DoF entry trajectory optimization problem.
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APPENDIX A
PROOF OF PROPOSITION III.1

PROOF For the dual-quaternion-based 6-DoF entry
trajectory optimization problem in (33), the Hamiltonian
function can be expressed as H = λT

J ‖Aw̃(t f )‖ + 1
2λ

T
q (q̃ ⊗

w̃) + λT
wJ−1

d (�F̃B + G̃B + M̃B − w̃ � Jdw̃) + λQ(Q̇ −
Qmax) + λn(‖FW‖ − nmax), where λJ, λq, λw, λQ, and λn

are the Lagrange multipliers associated with the dynamics
and the inequality constraints. Since the control moment
components M = [Mx,My,Mz] appears as linear terms
in the Hamiltonian function, the first-order necessary
conditions of optimality does not include the moment
components, which indicates that the optimal moment
components have bang–bang profiles [49].

APPENDIX B
PROOF OF LEMMA V.6

PROOF Let�∗ denote an optimal dual solution of the prob-
lem (41). Based on the mean value theorem, there exists
some �̃ in the line segment joining �k and �∗ such that

�k
d = d (�∗) − d (�k ) = 〈∇d (�̃), �∗ −�k〉

= 〈∇d (�̃) − ∇d (�∗), �∗ −�k〉
≤ ∥∥∇μd (�̃) − ∇μd (�∗)

∥∥ · ∥∥μ∗ − μk
∥∥

+ ∥∥∇λd (�̃) − ∇λd (�∗)
∥∥ · ∥∥	∗

� ◦ λ∗ − 	k
� ◦ λk

∥∥
≤ 1

ρμ

∥∥μ̃ − μ∗∥∥ · ∥∥μk − μ∗∥∥
+ 1

ρμ

∥∥∥	∗
� ◦ λ∗ − 	̃� ◦ λ̃

k
∥∥∥

F
· ∥∥	∗

� ◦ λ∗ − 	k
� ◦ λk

∥∥
≤ 1

ρμ

∥∥μk − μ∗∥∥2 + 1

ρλ

∥∥	∗
� ◦ λ∗ − 	k

� ◦ λk
∥∥2

≤ rk
1

∥∥(x̂k )T AE ẑk −a
∥∥2+rk

2

∥∥	k
�◦((x̂k )T BI ẑk −b

)∥∥2

where the second inequality holds due to the mean value
theorem, the last inequality holds due to the Lipschitz con-

tinuity of ∇d (�) and rk
1 = Lk

2
ρμ
, rk

2 = Lk
3
ρλ

. Next, we consider

the primal gap �k
p

�k
p = Lpk

(
x̂k+1, ẑk+1, �k

)− Lpk

(
x̂k, ẑk, �k

)
= Lpk

(
x̂k+1, ẑk+1, �k

)− Lpk

(
xk+1, zk+1, �k

)
+ Lpk

(
xk+1, zk+1, �k

)− Lpk

(
x̂k, ẑk, �k

)
(64)

where Lpk (x̂k+1, ẑk+1, �k ) − Lpk (xk+1, zk+1, �k ) is
bounded by

Lpk

(
x̂k+1, ẑk+1, �k

)− Lpk

(
xk+1, ẑk+1, �k

)
+ Lpk

(
xk+1, ẑk+1, �k

)− Lpk

(
xk+1, zk+1, �k

)
≤ Lk

1x

2

∥∥xk+1 − x̂k+1
∥∥2 + Lk

1z

2

∥∥zk+1 − ẑk+1
∥∥2

≤ Lk
1x + Lk

1z

8

(∥∥xk+1 − x̂k
∥∥2 + ∥∥zk+1 − ẑk

∥∥2
)

(65)

where the first inequality is due to the Lipschitz continuity
of L(x, z, �) with given x or z, Lk

1x and Lk
1z are the Lipschitz

constants, while the second inequality follows from the facts
that x̂k = ẑk and the triangle inequality for norms. Then,
combining (56) and (65), we can set the bound of �k

p as
(62) by denoting

lk
1 = Lk

1x + Lk
1z

8
− κk

x , lk
2 = Lk

1x + Lk
1z

8
− κk

z . (66)

APPENDIX C
PROOF OF LEMMA V.7

PROOF The difference between two adjacent optimality
gaps can be bounded as follows:

�k
d −�k−1

d =[d∗ − d
(
�k
)]− [d∗ − d

(
�k−1

)]
=Lpk−1

(
x̂k−1, ẑk−1, �k−1

)−Lpk−1

(
x̂k, ẑk, �k−1

)
+ Lpk−1

(
x̂k, ẑk, �k−1

)−Lpk

(
x̂k, ẑk, �k

)
= Lpk−1

(
x̂k−1, ẑk−1, �k−1

)−Lpk−1

(
x̂k, ẑk, �k−1

)
+
〈
μk−1 − μk,

(
x̂k
)T

AE ẑk − a
〉

+ ζ k−1
2 − ζ k

2

2

∥∥∥(x̂k
)T
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∥∥∥2

+
〈
	k−1
� ◦ λk−1 − 	k

x ◦ λk,
(
x̂k
)T
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〉

+
(
ζ k−1

3 	k−1
� − ζ k

3 	k
x

)
2

◦
∥∥∥((x̂k

)T
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)∥∥∥2

≤ −ζ
k−1
2 + ζ k

2
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∥∥∥2
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�

∥∥− ζ k
3

∥∥	k
x

∥∥
2

∥∥∥(x̂k
)T
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∥∥∥2

(67)

where the last inequality holds due to the updates
of the dual variables �k−1 and the primal descent
at the kth iteration. Next, we proceed to bound the
decrease in the primal gap �k

p. Based on the definition
of the augmented Lagrangian function in (44) and
the updating rule of �, we have Lpk (x̂k, ẑk, �k ) =
Lpk−1 (x̂k, ẑk, �k−1) + 3ζ k

2 −ζ k−1
2

2 ‖(x̂k )T AE ẑk − a‖2 +
(3ζ k

3 	k
x−ζ k−1

3 	k−1
� )

2 ◦ ‖((x̂k )T BI ẑk − b)‖2. Recall from
Lemma V.6 that Algorithm 1 gives a sufficient descent of
�k

p. Hence, we have the following bound on the decrease
of primal gap

�k
p −�k−1

p =[Lpk

(
x̂k+1, ẑk+1, �k

)− Lpk−1

(
x̂k, ẑk, �k

)]
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(
x̂k, ẑk, �k

)− Lpk−1

(
x̂k−1, ẑk−1, �k−1

)]
≤(ζ k

2 − ζ k−1
2
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∥∥2

+ (ζ k
3

∥∥	k
x

∥∥−ζ k−1
3

∥∥	k−1
�

∥∥) ◦
∥∥∥(x̂k

)T
BI ẑk −b

∥∥∥2

− κk
x

∥∥x̂k − xk+1
∥∥2 − κk

z

∥∥ẑk − zk+1
∥∥2
.

Then, the proof is completed by denoting αk
1 = ζ k

2 − ζ k−1
2

and αk
2 = ζ k

3 ‖	k
x‖−ζ k−1

3 ‖	k−1
� ‖.
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APPENDIX D
PROOF OF THEOREM V.8

To prove Theorem V.8, we consider the sum of optimal-
ity gaps �k

p +�k
d . First, we combine the two estimates in

(63a) and (63b)[
�k

p+�k
d

]− [�k−1
p +�k−1

d

]=[�k
p−�k−1

p

]+[�k
d −�k−1

d

]
≤ ζ k

2 − 3ζ k−1
2

2

∥∥∥(x̂k
)T

AE ŷk − a
∥∥∥2

+ ζ k
3 ‖	k

x‖ − 3ζ k−1
3 ‖	k−1

� ‖
2

∥∥∥((x̂k
)T

BI ŷk − b
)∥∥∥2

− κk
x

∥∥x̂k − xk+1
∥∥2 − κk

z

∥∥ŷk − yk+1
∥∥2
. (68)

Obviously, if the penalty coefficients {ζ k
1 , ζ

k
2 , ζ

k
3 } satisfy

ζ k
2 − 3ζ k−1

2 ≤ 0 and ζ k
3 ‖	k

x‖ − 3ζ k−1
3 ‖	k−1

� ‖ ≤ 0, the
estimate in (68) shows that [�k

p +�k
d ] ≤ [�k−1

p +�k−1
d ].

Moreover, the descent condition in (68) holds for all
k ≥ 1, and we have ‖x̂k − xk+1‖ → 0, ‖ŷk − yk+1‖2 →
0, ‖(x̂k )T AE ŷk − a‖ → 0, ‖((x̂k )T BI ŷk − b)‖ → 0,
which indicate the limit point of {x̂k, ŷk} is an optimal
solution of problem (41).

Next, we will show the linear convergence rate of the
proposed algorithm 1. Since �k

d and �k
p are both nonneg-

ative and upper bounded, it follows that d (�k ) is bounded
based on the following derivation:[
�k

p +�k
d

]− [�k−1
p +�k−1

d

]
≤ ζ k

2 − 3ζ k−1
2

2

∥∥∥(x̂k
)T

AE ŷk −a
∥∥∥2

+ ζ k
3 ‖	k

x‖ − 3ζ k−1
3 ‖	k−1

� ‖
2

∥∥∥((x̂k
)T

BI ŷk −b
)∥∥∥2

− lk
1

∥∥x̂k − xk+1
∥∥2 − lk

2

∥∥ŷk − zk+1
∥∥2

≤ − min

{
κk

x

lk
1

,
κk

z

lk
2

}
�k

d

− min

{
3ζ k−1

2 − ζ k
2

2rk
1

,
3ζ k−1

3 ‖	k−1
� ‖ − ζ k

3 ‖	k
x‖

2rk
2

}
�k

d

=τ k
d�

k
d + τ k

p�
k
p

where the last inequality holds due to the upper bounded of
�k

d and �k
p. Consequently, we have [�k

p +�k
d ] − [�k−1

p +
�k−1

d ] ≤ −τ k[�k
p +�k

d ], where τ k is defined as τ k =
min{τ k

d , τ
k
p}. This shows that the sequence {�k

d +�k
p} con-

verges to a stationary point R-linearly.1
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