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1  Introduction

The Unmanned Aerial Vehicles (UAV) has been widely 
used in civil and military applications. The UAV has a vari-
ety of potential uses, including search and rescue opera-
tions, area mapping, weather monitoring, agricultural 
operations (Razinkova et  al. 2014; Patterson et  al. 2014; 
Salazar-cruz et  al. 2008), etc. Vertical take-off and land-
ing (VTOL) vehicle has received a considerable attention 
and development for several decades (Basri et  al. 2015; 
Tan et  al. 2014). A popular class of the VTOL vehicle is 
multirotor aircraft, which has several lift-generating propel-
lers and does not require a swashplate like helicopter (Basri 
et al. 2015; Salazar-Cruz et al. 2009). Quadrotor is a com-
mon class among different multirotors whose configura-
tions have smaller nonlinear coupling and are easier to con-
trol (Escareno et al. 2008). In this paper, we are interested 
in designing a rotorcraft using only three propellers which 
has the same manoeuvrability of quadrotor. It is obvi-
ous that the advantage of Tri-Rotor over quadrotor is that 
it requires one motor less which would lead to a reduction 
of weight, volume and energy consumption (Salazar-Cruz 
et  al. 2009). However, Tri-Rotor has been characterized 
as with high nonlinearity and complex dynamics, which 
requires complicated and flexible controllers. In addition, 
compared with Fixed-Wing aircraft, the model of Tri-Rotor 
is more sensitive to control inputs, and more susceptible to 
external disturbance. Thus, it is a challenge to design a Tri-
Rotor control system due to these features.

Previously, many control methods have been proposed 
in the literatures to control a Tri-Rotor aircraft. In (Kara 
Mohamed and Lanzon 2013) a two stage feedback lineariza-
tion control method is proposed to handle actuators dynam-
ics and linearise the nonlinear system. In (Rys et al. 2014) 
and (Czyba et  al. 2016) a proportional-integral-derivative 
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(PID) control strategy is used to design and control a single 
tilt Tri-Rotor aerial vehicle. In (Chiou et al. 2013) the focus 
is on designing a controller based on fuzzy logic to exe-
cute hovering tasks efficiently. And in (Anwar et al. 2016) 
a fuzzy-based hybrid controller is adopted to achieve better 
transient performance and fast convergence towards stabil-
ity. A novel sliding mode control strategy is designed for 
fault-tolerant control in (Yang et  al. 2017). Backstepping 
control is implemented in (Sanca et al. 2014; Kulhare et al. 
2012; Song et al. 2016) to deal with nonlinearities, meas-
urement disturbances, noise and sensor biases, furthermore 
to stabilize the system. The controllers above are simple to 
implement. However, model uncertainty would cause per-
formance degradation or instability of the control system.

In this paper, a fuzzy backstepping sliding mode control-
ler is used for stabilization and trajectory tracking of Tri-
Rotor aircraft. The backstepping control techniques have 
been widely used in nonlinear system because of their sys-
tematic and recursive design methodology for nonlinear 
feedback control (Fei et  al. 2015; Petit et  al. 2015; Wang 
and Wu 2015). Backstepping can force a nonlinear system 
to behave like a linear system in a new set coordinates in the 
absence of uncertainties. However, the backstepping control-
ler is always based on the assumption that the structure of the 
system model is known with unknown slow-varying system 
parameters. But in actual situation, such as transient perfor-
mance, unmodeled dynamics, disturbances and not linear 
parameterizable uncertainties often complicate the control 
approach. Sliding mode controller is proposed as a system-
atic method to maintain the stability of Tri-Rotor and achieve 
consistent performance despite modelling imprecisions. 
However, backstepping sliding mode controller essentially 
needs to choose proper coefficients in order to get a satis-
factory performance response. The improper coefficients can 
lead to inappropriate responses (Basri et  al. 2014). In this 
paper, the coefficients of backstepping sliding mode control-
ler are obtained through an optimization method of gradient 
descent algorithm. To improve disturbance rejection capabil-
ity of the controller, a fuzzy logic controller is proposed to 
compensate the coefficients uncertainty.

The work presented in this paper focuses on the Tri-
Rotor depicted in Fig. 1. The two main rotors fixed to the 
aircraft frame in the forward part rotate in opposite direc-
tions, decreasing the reaction torque generated to almost 
zero. By using a servomechanism, the rear rotor can be 
tilted to produce a yaw torque. The remainder of this paper 
is organized as follows: In Sect. 2 the mathematical model 
is presented. The proposed fuzzy backstepping sliding mode 
control method is described in Sect. 3. Section 4 is devoted 
to the presentation and the discussion of simulation results 
with the proposed method applied to the Tri-Rotor. Finally, 
conclusion and future studies are provided in Sect. 5.

2 � Dynamical model

2.1 � Definition of coordinate system

Figure 2 is the schematic of the Tri-Rotor. In most cases, 
a Tri-Rotor UAV is assumed as a rigid object. The coor-
dinate systems are defined as follows: Ob − XbYbZb is the 
body frame. Ob, is at the center of gravity, Xb pointing to 
the right of the aircraft, Yb pointing front and Zb point-
ing up. On − XnYnZn is the navigation frame which coin-
cides with the geographic frame (east, north, upwards). 
Om1 − Xm1Ym1Zm1, Om2 − Xm2Ym2Zm2, Om3 − Xm3Ym3Zm3 
are the motor frames which are fixed with three motors, 
respectively. Ob is the original point of the Tri-Rotor aircraft 
and the coordinate is (0, 0, 0)T . Therefore, the coordinate of 
right motor is (L1, n, h)T , the left one’s is (−L1, n, h)

T and 
the rear one’s is (0,−l, h)T .

2.2 � Translational dynamics

The equation of motion for a rigid body object to body 
force Fn ∈ R3 applied at the center of mass is given by 
Newton equation with respect to the navigation coordinate 
frame and can be written as

where 
⇀

V ∈ R3 is the navigation velocity vector, m ∈ R is the 
mass of Tri-Rotor.

The thrusts of right and left motors can be defined as 
Tm1
1 = (0, 0, T1)

T and Tm2
2 = (0, 0, T2)

T , respectively. Trans-
late the thrusts vector into body frame

(1)m
⇀̇

V = Fn,

(2)

{

Tb
1 = Cb

m1T
m1
1

Tb
2 = Cb

m2T
m2
2

,

Fig. 1   The Tri-Rotor aircraft
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where Cb
m1 =





1 0 0

0 1 0

0 0 1



, Cb
m2 =





1 0 0

0 1 0

0 0 1



.

The thrust of rear motor can be defined as 
Tm3
3 = (0, 0, T3)

T , translate the thrust vector into body frame

where Cb
m3 =





cosα 0 − sin α

0 1 0

sin α 0 cosα



, α is the tilt angle of rear 
motor.

The gravity can be defined as Gn = (0, 0,−mg)T and the 
resultant force in navigation frame can be described as

where

(3)Tb
3 = Cb

m3T
m3
3 ,

(4)Fn = Cn
b(T

b
1 + Tb

2 + Tb
3 )+ Gn,

2.3 � Rotational dynamics

In this subsection all the major torques acting on the 
vehicle in order to derive the angular acceleration equa-
tions of motion are presented. The equation of motion for 
a rigid body object to body torque Mb ∈ R3 applied at the 
center of mass is given by Euler equation with respect to 
the body coordinate frame and can be written as

where I ∈ R3 is an inertia matrix and ω ∈ R3 is the body 
angular velocity vector.

Replace ω ∈ R3 with vehicle’s principle angular accel-
eration pitch (θ̈), roll (γ̈) and yaw (ψ̈) and considering the 
vehicle’s principle axis inertia (Ixx, Iyy and Izz), the Eq. 6 
can be redefined as

(6)Iω̇ + ω × Iω = Mb,

Fig. 2   Schematic of the Tri-
Rotor
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Cn
b =





cosψ sinψ 0

− sinψ cosψ 0

0 0 1









1 0 0

0 cos θ sin θ

0 − sin θ cos θ









cos γ 0 − sin γ

0 1 0

sin γ 0 cos γ





=





cosψ cos γ + sinψ sin θ sin γ sinψ cos θ − cosψ sin γ + sinψ sin θ cos γ

− sinψ cos γ + cosψ sin θ sin γ cosψ cos θ sinψ sin γ + cosψ sin θ cos γ

cos θ sin γ − sin θ cos θ cos γ



.

Thus, the full expression of translational dynamic equations 
is defined as

(5)











mẍ =− T3 · sin α · (cosψ cos γ + sinψ sin θ sin γ )+ (T1 + T2 + T3 cosα) · (− cosψ sin γ + sinψ sin θ cos γ )

mÿ =− T3 · sin α · (− sinψ cos γ + cosψ sin θ sin γ )+ (T1 + T2 + T3 cosα) · (sinψ sin γ + cosψ sin θ cos γ )

mz̈ =− T3 · sin α · cos θ sin γ + (T1 + T2 + T3cosα) · cos θ cos γ − mg

.
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where Mb
x , M

b
y  and Mb

z  are the components of vector Mb.

As mentioned above, the coordinates of three 
motors are d1 = (L1, n, h)

T , d2 = (−L1, n, h)
T  and 

d3 = (0,−l, h)T . So the torques which are derived based 
on the thrusts of three motors can be defined as

As the blades rotate, they are subject to drag forces 
which produce torques in opposite direction relative to 
angular velocity of motor. The propeller torques can be 

defined as Mm1
1 =

(

0 0 −Q1

)T
, Mm1

2 =
(

0 0 Q2

)T  and 

Mm3
3 =

(

0 0 −Q3

)T
. These torques can be written in 

body frame as

where Qi is the propeller torque.
The gyroscope moment would be created when the 

rear motor tilts. The gyroscope moment is defined by the 
cross product of the kinetic moment of the propeller and 
the tilt velocity vector.

(7)















Ixx θ̈ + (Izz − Iyy)γ̇ ψ̇ = Mb
x

Iyyγ̈ + (Ixx − Izz)θ̇ ψ̇ = Mb
y

Izzψ̈ + (Iyy − Ixx)θ̇ γ̇ = Mb
z

,

(8)

M
b

F = T
b

1 × d1 + T
b

2 × d2+T
b

3 × d3

=





0 −T1 0

T1 0 0

0 0 0









L1

n

h



+





0 −T2 0

T2 0 0

0 0 0









−L2

n

h





+





0 −T3 cosα 0

T3 cosα 0 T3 sin α

0 −T3 sin α 0









0

−l

h





=





−(T1 + T2) · n+T3 cosα · l

T1 · L1 − T2 · L2+T3 sin α · h

T3 sin α · l



.

(9)

M
b

R
= C

b

m1M
m1
1 + C

b

m2M
m2
2 + C

b

m3M
m3
3

=





Q2 sin α

0

Q2 − Q1 − Q3 cosα



,

(10)

M
b

G
= C

b

m3(H
m3
3 ×

⇀

α̇)

=





−J3ω3α̇ cosα

0

−J3ω3α̇ sin α



,

where Hm3
3 = (0, 0, J3ω3)

T  is the moment vector of 
momentum and J3 is the moment of inertia of rear 
motor. The angular velocity vector of the rear motor is 
⇀

α̇ = (0, α̇, 0)T .

Finally, the complete expression of the torque vector, 
with respect to Ob expressed in body frame is

Replace all torque expressions in Eq. 6 and the equation 
of motion can be written as:

3 � Control strategy

Backstepping sliding mode control is a technique provid-
ing a recursive method of designing stabilizing controls 
for a class of nonlinear systems that are transformable to 
a strict feedback system while maintaining stability and 
consistent performance despite modelling imprecision. 
In this fuzzy backstepping sliding mode control system, 
the backstepping sliding mode technique is the main con-
troller, and the coefficients compensation controller con-
taining a fuzzy control approach is used to eliminate the 
effect of uncertainties caused by external disturbance and 
unmodeled dynamics.

The state space model for the proposed Tri-Rotor 
mechanism can be written as follows with state vector X 
and input vector U:

where

(11)

M
b = M

b

F
+M

b

T
+M

b

R
+M

b

G

=







−(T1 + T2) · n+ T3 cosα · l + Q3sinα − J3ω3α̇ cosα

T1 · L1 − T2 · L2 + T3 sin α · h

T3 sin α · l + Q2 − Q1 − Q3 cosα − J3ω3α̇ sin α






.

(12)































Ixx θ̈ + (Izz − Iyy)γ̇ ψ̇ = −(T1 + T2) · n+ T3 cosα · l

+ Q3sinα − J3ω3α̇ cosα

Iyyγ̈ + (Ixx − Izz)θ̇ ψ̇ = T1 · L1 − T2 · L2 + T3 sin α · h

Izzψ̈ + (Iyy − Ixx)θ̇ γ̇ = T3 sin α · l + Q2 − Q1

− Q3 cosα − J3ω3α̇ sin α

.

(13)X = [ θ θ̇ γ γ̇ ψ ψ̇ x ẋ y ẏ z ż ]T

(14)U = [ u1 u2 u3 u4 u5 u6 ]
T ,

(15)































u1 = −(T1 + T2) · n+ T3 cosα · l + Q3sinα − J3ω3α̇ cosα

u2 = T1 · L1 − T2 · L2 + T3 sin α · h

u3 = T3 sin α · l + Q2 − Q1 − Q3 cosα − J3ω3α̇ sin α

u4 = −T3 · sin α · (cosψ cos γ + sinψ sin θ sin γ )+ (T1 + T2 + T3 cosα) · (− cosψ sin γ + sinψ sin θ cos γ )

u5 = −T3 · sin α · (− sinψ cos γ + cosψ sin θ sin γ )+ (T1 + T2 + T3 cosα) · (sinψ sin γ + cosψ sin θ cos γ )

u6 = −T3 · sin α · cos θ sin γ + (T1 + T2 + T3cosα) · cos θ cos γ − mg

.
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Therefore, the vehicle’s state-space model is given by

Where a1 =
Iyy−Izz
Ixx

, a2 =
Izz−Ixx
Iyy

, a3 =
Ixx−Iyy
Izz

, b1 = 1
Ixx
, 

b2 =
1
Iyy
, b3 = 1

Izz
 and b4 = b5 = b6 =

1
m
.

Considering the first two states subsystem in Eq.  16 
for the pitch control as follows

Assuming that the target value of pitch angle is θd , then 
the tracking error e1 and its derivative ė1 are considered 
as follows

Here, the Lyapunov function is introduced to stabilize 
the tracking error e1

If the pitch angular velocity θ̇ is considered to be the 
control input, the pitch angular velocity can be selected 
as θ̇ = θ̇d + �1e1 and the Lyapunov function is negative 
definite.

However, the pitch angular velocity θ̇, which is just a sys-
tem variable, not an actually control input, that can be 
regarded as a virtual control input and its tracking error 
could be depicted as

In addition, the augmented Lyapunov function is

(16)f (X,U) =









































θ̇

γ̇ ψ̇a1 + b1u1
γ̇

θ̇ ψ̇a2 + b2u2
ψ̇

θ̇ γ̇ a3 + b3u3
ẋ

b4u4
ẏ

b5u5
ż

b6u6









































,

(17)

{

ẋ1 = x2 = θ̇

ẋ2 = γ̇ ψ̇a1 + b1u1

.

(18)

{

e1 = θd − θ

ė1 = θ̇d − θ̇
.

(19)V(e1) =
1

2
e21

(20)V̇(e1) = e1(θ̇d − θ̇ ).

(21)V̇(e1) = −�1e
2
1 < 0.

(22)Sθ = �1e1 + θ̇d − θ̇ .

(23)
V(e1, Sθ ) =

1

2
(e21 + S2θ ).

Considering the analysis above, the equation ṠθSθ < 0 
should be satisfied. Then choose the attractive surface is 
the time derivation of Eq. 22

Then the control input can be calculated from equation

As is analyzed above, the dynamic sliding mode func-
tions are depicted as follows

where eθ = θd − θ , eφ = φd − φ, eψ = ψd − ψ , 
ex = xd − x, ey = yd − y and ez = zd − z. Then the stabi-
lizing control laws are as follows

In conventional backstepping method, the control law 
coefficients (�i and ki) are selected by trial and error. 
To overcome this drawback and identify the values in a 
convenient way, the gradient descent optimization tech-
nique is used, which adjusts the control law coefficients 
searched using the negative gradient, and attaches an 
inertia term to achieve a fast convergence to the global 
minimum (Sheng and Zhang 2015). In this paper, the fol-
lowing function is utilized to judge the performance of 
the controller:

(24)ṠθSθ = −k1sgn(Sθ ) · Sθ − �1S
2
θ < 0.

(25)

Ṡθ = −k1sgn(Sθ )− �1Sθ

= �1ė1 + ẋ2 − θ̈d

= �1(x2 − θ̇d)− θ̈d + a1x4x6 + b1u1

(26)u1 =
1

b1
[−a1x4x6 + θ̈d − k1sgn(Sθ )− �

2
1e1 − 2�1ė1].

(27)































Sθ = �1eθ + ėθ
Sφ = �2eφ + ėφ
Sψ = �3eψ + ėψ
Sx = �4ex + ėx
Sy = �5ey + ėy
Sz = �6ez + ėz

,

(28)



















































































u1 =
1

b1
[−a1x4x6 + θ̈d − �

2
1eθ − 2�1ėθ − k1sgn(Sθ )]

u2 =
1

b2
[−a2x2x6 + φ̈d − �

2
2eφ − 2�2ėφ − k2sgn(Sφ)]

u3 =
1

b3
[−a3x2x4 + ψ̈d − �

2
3eψ − 2�3ėψ − k3sgn(Sψ)]

u4 =
1

b4
[ẍd − �

2
4ex − 2�4ėx − k4sgn(Sx)]

u5 =
1

b5
[ÿd − �

2
5ey − 2�5ėy − k5sgn(Sy)]

u6 =
1

b6
[z̈d − �

2
6ez − 2�6ėz − k6sgn(Sz)− g]

.

(29)J =
1

2
(r(k + 1)− y(k + 1))2 =

1

2
e2(k + 1),
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where r(k + 1) is the input order and y(k + 1) is the out-
put signal.

In pitch channel, for example, the updated value of 
parameter �1 can be indicated as:

where τ is the learning rate and η is the inertia coefficient. 
The ∂J

∂�1
 can be calculated as:

As the ∂y(k+1)
∂u1(k)

 is associated with dynamics function of 
the system and it cannot be accurately expressed, so we use 
sign function sgn

(

∂y(k+1)
∂u1(k)

)

 instead. Thus, the parameter �1 
can be calculated as follow:

The others parameters can be calculated as aforementioned 
discussion. The gain values for the control law are given 
in Table 1. However, uncertain unmodeled parameters and 
complex electromechanical system lead to control errors. It 
is vital to estimate the effect of the unknown coefficients 
online and compensate control laws. To handle this prob-
lem we apply fuzzy logic control.

Intelligent fuzzy logic control is new and mostly 
attended area in controller design last decades, and it has 
been implemented on various dynamical systems (Norton 
et al. 2015; Yadav and Gaur 2014). Here, the tracking error 
e and deviation ė are regarded as the input of the fuzzy con-
troller and control law error is the output. The triangular 
type is selected as the membership function of inputs and 
gaussian type is selected as the membership function. The 
fuzzy logic control sets have been demonstrated in Figs. 3, 
4 and 5. The control surface is illustrated in Fig. 6.

Table 2 shows the rules for the fuzzy logic control with 
two inputs and five linguistic values.

In Figs. 3, 4, the inputs of the fuzzy controller have been 
normalized to a range of (−1,+1). The expressions of the 
input normalization are as follows:

(30)��1(k + 1) = −τ
∂J

∂�1
+ η��1(k),

(31)
∂J

∂�1
=

∂J

∂y(k + 1)
·
∂y(k + 1)

∂u1(k)
·
∂u1(k)

∂�1(k)
.

(32)

��1(k + 1) = e(k + 1)sgn

(

∂y(k + 1)

∂u1(k)

)

·
1

b1
[−a1x4x6 + θ̈d − 2�1eθ − 2ėθ − k1sgn(Sθ )].

(33)en =
1

emax
e

(34)
ėn =

1

ėmax
ė.

Similarly, the output of fuzzy controller uf  is denormalized 
to uF by the output denormalization factor ku. The expres-
sion of the output denormalization is as follows:

Then, the improved control law can be represented as:

In order to guarantee the stability of the system, the output 
denormalization factor ku can be calculated as follows:

Consider the Lyapunov function 23–25. Substituting 
the improved control law Eq. 36, then Eq. 24 becomes:

(35)uF = kuuf .

(36)ui(I) = ui + uF .

Table 1   Observer coefficients Coefficients �1 �2 �3 �4 �5 �6 k1 k2 k3 k4 k5 k6

Value 30 35 30 28 28 28 1 1 1 1.5 1.5 1.5
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As k1 > 0,�1 > 0, if −k1 < b1kuuf < k1, the Equation F 
can be guaranteed.

(37)ṠθSθ =
(

Ṡθ + b1kuuf
)

· Sθ < 0

(38)
[

b1kuuf − k1sgn(Sθ )
]

· Sθ − �1S
2
θ < 0.

The output fuzzy sets are normalized in the interval 
(−1,+1), then 

∣

∣uf
∣

∣ ≤ 1, therefore, by choosing ku <
k1
|b1|

 we 
can make sure the system will be asymptotically stable.

4 � Simulation results

In this section, simulation results are presented in order 
to observe the effectiveness of the derived model and the 
performances of the proposed fuzzy backstepping slid-
ing mode control law. The simulation results are based on 
the following real parameters of the Tri-Rotor depicted 
in Fig.  1. The detailed description has been shown in 
Table 3.

The control laws ui(I) have been calculated in Sect. 3, 
the actual control variables can be calculated by inverse 
solving the Eq.  15. Considering the parameters of the 
vehicle in Table  3, the expressions of the actual control 
variables are as follows:

For the purpose of autonomous take-off and landing, the 
altitude and attitude of the UAV are important control 

(39)























T1 = −1.25u1 + 1.25u2 + 0.025u4 + 0.4375u6 + 5.6224

T2 = −1.25u1 − 1.25u2 − 0.025u4 + 0.4375u6 + 5.6224

T3 = 2.5u1 + 0.125u6 + 1.6063

α = u4

�

(2.5u1 + 0.125u6 + 1.6064)

.
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Table 2   Fuzzy rules of tuning 
system

e

NB NS ZE PS PB

ė NB PB PB PB PS ZE

NS PB PB PS ZE NS

ZE PB PS ZE NS NB

PS PS ZE NS NB NB

PB ZE NS NB NB NB

Table 3   Parameters of the vehicle

Parameter Mean Value Unit

m Mass 1.31 kg

Ixx Pitch inertia 0.031 kg · m2

Iyy Roll inertia 0.025 kg · m2

Izz Yaw inertia 0.042 kg · m2

L1 Position of right motor 0.4 m

L2 Position of left motor 0.4 m

l Position of rear motor 0.35 m

n Position of rear motor 0.05 m

h Position of gravity center 0.02 m

g Gravity 9.81 g · s−2
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technology indexes. Therefore, the control objectives are 
to reach and maintain Tri-Rotor at a certain desired alti-
tude and attitude. The inertial states are given by θ0 = 0, 
γ0 = 0, ψ0 = 0 and z0 = 0. The desired altitude value 
was placed at zd = 10. The periodic sinusoidal func-
tion is used as a reference to the yaw angle and periodic 
Cosine  function is used as a reference to the roll and 
pitch. In order to simulate the real situation, interfer-
ence  torque is added at the time of 5 s. The control law 
without fuzzy logic is chosen as the contrastive method. 
The tracking effects are shown in Figs. 7, 8, 9 and 10 and 
tracking errors are shown in Figs. 11, 12, 13 and 14.
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Fig. 7   The tracking effect of pitch angle
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Fig. 8   The tracking effect of roll angle
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Fig. 9   The tracking effect of yaw angle
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Fig. 10   The tracking effect of altitude
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Fig. 11   The tracking error of pitch angle
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Fig. 12   The tracking error of roll angle
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Taking Fig.  12 for example, we can see the control 
improvements with fuzzy logic compared to non-fuzzy 
logic. Table  4 below has demonstrated the differences in 
performance via settling time, RMS error and Steady-State 
error. From Table 4 we can figure out that the RMS error is 
reduced by 57.2% and the Steady-State error is reduced by 
57.1% with fuzzy logic.

The simulation results indicate that the backstepping 
sliding mode control algorithm is capable of controlling the 
nonlinear model of the Tri-Rotor. However, at the begin-
ning of simulation, the mutation of states cause the deterio-
ration of the tracking effects. It is obvious that the proposed 
control law with intelligent fuzzy logic control can achieve 
a better tracking effect with smaller steady errors. In addi-
tion, the improved control algorithm can also speed up the 
convergence and inhibit the interference torque.

5 � Conclusion

This paper has investigated the dynamical model of a Tri-
Rotor helicopter and a nonlinear control strategy called 
fuzzy backstepping sliding mode control which is pro-
posed for the attitude stabilization and altitude tracking of 
the vehicle. The dynamical model is established by using 
the traditional Newton–Euler method. Control method 
designed for such a nonlinear aircraft is a backstepping 
sliding mode controller which is a powerful nonlinear con-
trol method, and useful in controlling flying objects. As 

the control precision of the backstepping sliding mode is 
closely dependent on the precision of coefficients, a fuzzy 
logic control is proposed to eliminate the coefficients errors 
and compensate for the coefficients uncertainty. Simula-
tions in this research have been performed to survey the 
proposed control algorithm. As is shown in the results, 
the proposed control method can achieve a better tracking 
effect with smaller steady errors and a faster convergence 
speed.
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