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Distributed Optimization for Rank-Constrained
Semidefinite Programs

Chaoying Pei, Sixiong You, Chuangchuang Sun

Abstract—This letter develops a distributed optimization
framework for solving the rank-constrained semidefi-
nite programs (RCSPs). Since the rank constraint is
non-convex and discontinuous, solving an optimization
problem with rank constraints is NP-hard and notoriously
time-consuming, especially for large-scale RCSPs. In the
proposed approach, by decomposing an unknown matrix
into a set of submatrices with much smaller sizes, the
rank constraint on the original matrix is equivalently trans-
formed into a set of constraints on the decomposed
submatrices. The distributed framework allows parallel
computation of subproblems while requiring coordination
among them to satisfy the coupled constraints. As the
scale of every subproblem solved independently is signif-
icantly reduced, the decomposition scheme and the dis-
tributed framework can be applied to large-scale RCSPs.
Moreover, optimality conditions of the proposed distributed
optimization algorithm for RCSPs at the converged point
are analyzed. Finally, the efficiency and effectiveness of the
proposed method are demonstrated via simulation exam-
ples for solving the image denoising problem.

Index Terms—Distributed optimization, rank-constrained
optimization.

[. INTRODUCTION

RANK-CONSTRAINED semidefinite program (RCSP)

is to minimize a convex objective function of positive
semidefinite matrices subject to a set of convex constraints
and rank constraints [1]. In recent years, RCSP has attracted
increasing attention due to its extensive applications, such
as signal processing, system identification, and image noise
reduction [2], just to name a few. Moreover, many noncon-
vex optimization problems can be equivalently converted to
RCSPs. For example, a polynomial programming problem can
be formulated as a rank-one constrained semidefinite program-
ming problem [3]. A rank minimization problem (RMP) can
also be equivalently transformed into a RCSP [2]. Due to the
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wide range of applications of RMPs in the field of machine
learning, such as low-rank kernel learning, multi-stage multi-
task learning, and recommender systems, it further implies the
extensive applications of RCSPs [4].

However, the non-linearity and non-convexity of the rank
constraint lead to challenges in developing a scalable RCSP
algorithm with robust convergence. Most of the existing
approaches for RCSP focus on solving a special type of
problem with certain types of constraints or objective func-
tions. For example, alternating projection methods have been
developed for RCSP problems with linear matrix inequalities
(LMI) [5]. Methods based on linearization and factoriza-
tion have been applied to linear regression problems and
problems with bilinear matrix inequalities [6]. A good ini-
tial guess is usually required for these methods to find a
convergent solution. Besides, an efficient greedy algorithm
has been designed for large-scale unconstrained low-rank
problems [7]. Although these algorithms have demonstrated
high computing performance when solving a specific type of
problem, they are not applicable to general RCSPs. Our prior
work in [2] developed an iterative algorithm to solve general
RCSPs. However, for large-scale RCSPs, the iterative algo-
rithm involving semidefinite constraints at each iteration is
time-consuming.

Meanwhile, approximation and relaxation techniques have
been introduced to solve RCSPs or RMPs to reduce the com-
putational complexity. For instance, the nuclear norm has been
used as a surrogate for the non-convex rank function [8].
In Eckart and Young’s theorem [9], an approximated low-
rank matrix is obtained by using the truncated singular value
decomposition (SVD), which has been applied as an effi-
cient approach when searching for a low-rank matrix [10].
However, these approximation approaches cannot guarantee
an optimal solution to the original problem. Work in [11]
provides the conditions when the relaxed problem is equiv-
alent to the original low rank optimization problem. We aim
to develop a scalable RCSP algorithm that considers the exact
rank constraint without approximation or relaxation.

Distributed optimization approaches have been developed
to improve the scalability and efficiency in solving large-scale
optimization problems [12]. In [13], an iterative algorithm
based on proximal minimization has been developed and
applied to solve convex optimization problems. In addition to
solving convex optimization problems, distributed approaches
have been applied to solve some of the nonconvex optimization
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problems. For example, a distributed augmented Lagrangian
method has been developed, which requires the objective
function to be separable and the constraints to be convex or lin-
ear [14]. However, due to the rank constraint, there are limited
studies on developing a distributed algorithm for RCSPs.

To improve the scalability and efficiency for solving RCSPs,
a distributed optimization framework based on matrix decom-
position and proximal minimization is proposed to decompose
a large-scale RCSP into a set of small-scale RCSPs. Each
subproblem is then solved via an iterative rank minimization
(IRM) method developed in our previous work [2]. The dis-
tributed framework allows parallel computation of the decom-
posed RCSPs while applying a coordination scheme among
them to satisfy the coupled constraints. Furthermore, the opti-
mality conditions of the proposed distributed optimization
framework at the converged point are analyzed. In the end,
the image noise reduction problem is used as a simulation
example with comparative results obtained from centralized
methods [2], [15], [16] to demonstrate the efficiency and
effectiveness of the distributed optimization algorithm.

In summary, the contribution of this letter includes two man-
ifolds. The first one is the matrix decomposition scheme that
decomposes a matrix rank constraint into a set of constraints
on its submatrices in smaller sizes. The second is a dis-
tributed framework that solves the decomposed subproblems
in parallel to cooperatively satisfy the rank constraint, semidef-
inite constraint, and affine functions of the original problem.
The overall goal is to improve the scalability and compu-
tational efficiency when solving large-scale RCSPs. Thus,
compared with existing RCSP algorithms, this letter represents
the first attempt to decompose the rank constraint. Moreover,
the exact rank constraint is satisfied without relaxation or
approximation.

The remainder of this letter is organized as follows.
Section II introduces the problem formulation of RCSP and its
equivalent conversion. The distributed optimization framework
and the proof of convergence are described in Section III. The
simulation example is presented in Section IV. We conclude
this letter in Section V.

II. PROBLEM FORMULATION
A RCSP problem is formulated as

H%}n J=fX)
st. geX) <0, k=1,...,c,
rank(X) <r, Xe§S", (D

where X € §'} is a positive semidefinite matrix to be deter-
mined, f is a convex objective function, gx(X) < 0, k =
1,...,c, is a convex set of constraints, and r is the upper
bound of the rank of X.

By ignoring the rank constraint, problem (1) can be relaxed
as a semidefinite programming (SDP) problem. Although solv-
ing the relaxed problem yields a lower bound of the objective
value, the solution in general cannot guarantee to satisfy the
rank constraint in the original problem (1). Thus, an equivalent
conversion is introduced to replace both the rank constraint and
the semidefinite constraint.

Lemma 1 [17, Lemma 2.1]: For a rectangular Z € R™*",
the rank constraint on Z, rank(Z) < r, can be equiva-
lently transformed into Z = N{Nj, where Ny € R™*" and
N, € R™", In addition, for a semidefinite matrix X € S", the
rank constraint rank(X) < r, together with the semidefinite
constraint X > 0, are equivalent to that there exists a matrix
N € R™ such that X = NN.

Given Lemma 1, problem (1) can be reformulated as

1;(1113 J=7X)

st. kX)) <0, k=1,...,c,
X = NN7, ()

where N € R™*". By introducing matrix N, the rank constraint
and the semidefinite constraint on the original matrix can be
decomposed into a set of constraints on its submatrices, which
will be explained in the next section.

Il1. DISTRIBUTED OPTIMIZATION FRAMEWORK
A. Problem Decomposition

To solve RCSP in (1) in a distributed manner, a decompo-
sition method is introduced below to decompose the original
rank constraint into a set of small-scale rank constraints. When
the unknown matrix X € §'| in (2) is written as X = NN7,
the rank constraint rank(X) < r is satisfied when there exists
N € R™. Matrix N can be written as the composition of
row elements in the form of N = [Ny,..., Nk]?, where
N; € Rpixr, Zi;lpi = n. Thus, based on X = NN7, X can
be expressed as

N1N1T N1N2T NlNkT
NzN]T N2N2T NZNkT

- . : : G)
NkN1T NkNZT NkaT

Here we denote the submatrices of X as X;; = Nl-NJ-T.

In general, there are multiple ways to partition a matrix.
Therefore, the decomposition scheme in (3) is not unique.
After decomposition, the non-zero entries are required to
be included in at least one of the decomposed submatrices.
When special structures of the unknown matrix are consid-
ered, the decomposition scheme can be adapted to facilitate
the distributed computation.

For the RCSP in (2), submatrices Ny, N3, ..., Ny are intro-
duced after the matrix decomposition. We denote the pair set
(i,)) € D for all decomposed submatrices X;; = NiNJT, where
D denotes the set of the row and column indices pair for
all decomposed submatrices. Then constraint X = NN” can
be equivalently decomposed into a series of small-scale rank
constraints X;; = NiN]T, (i,j) € D. For every decomposed
submatrix X;;, (i,j) € D, by handling the other submatrices as
given constants, the objective and constraints can be expressed
as J = f;;(Xy) and g ;X)) <0, j=1,...,c, respectively,
where X;; € RP*>Pi, fi; and gy ;; are the objective function and
constraints involving X;; in the subproblem, and c;; denotes the
number of constraints involving X;;. Then for each submatrix
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Xj, (i,j) € D, a subproblem is formulated as
min J = f;(X;;
XoNCN; JiiXij)
st geyXp) <0, k=1,....¢5,
X; =NNJ. (4)

Through the decomposition, the original RCSP problem in (1)
is decomposed into a set of small-scale subproblems when
each subproblem involves blocks of X. To solve each sub-
problem of (4) using the IRM algorithm developed in [2],
the following lemmas are introduced to reformulate the rank
constraint in each subproblem.

Lemma 2 [2, Proposition 2]): X = NN7 can be eq%liva-

T
; 1;I(i|)§rand [; 1§(i| >
0, where X € S and N € R"*".

However, lemma 2 is not applicable to the non-square matri-
ces. As a result, another lemma for non-square matrices is
introduced, where X;; € RP**Pi with p; # p;.

Lemma 3 [2, Lemma 1]: For a given matrix X € R"™*",
rank(X) < r if and only if there exist symmetric matrices

Y € R™™ and Z € R"*" such that
rank(Y) + rank(Z) < 2r, |:Y Xj| > 0. 4

lently transformed into rank(

). I/

According to Lemmas 2 and 3, two conversions for X;; =
N,-NiT and X;; = N,-NjT, i # j, are listed below, respectively.
(1) When i = j, we have X;; = NiNiT, where X;; € RPi*xPi,
N; e R’ By introducing an extended matrix X' =
T
[1{; §li| e RPHNX@itD " the constraint X; = N;N! can
1 11
be reformulated as rank(X{') < r and X§* > 0 according to
Lemma 2
(2) When i # j, we have X;; = NiNjT, where X;; € RPI¥Pi,
N; € RP>" N; € R%*" By introducing an extended matrix
ex __ Y i
Xy = N1,
Y € RPHAIx@i+n and 7 e R@TI*@i*7) | the constraint

ex

X;i = N;N7 can be reformulated as Y X’f > 0 and
ij — N (Xg_x)T 7z -

rank(Y) + rank(Z) < 2r, according to Lemma 3. In addi-
tion, the rank constraint on Y and Z can be reformulated as
Y 0
0 Z

Consequently, based on the equivalent conversions intro-
duced above, when i = j, problem (4) can be written as

e RP*Nx@i+1)  and extra two matrices

rank < 2r.

min J = fi;(X;;) (62)
st gri(Xi) <0, k=1,...,ci, (6b)
I N7
ex | N
xi =[x (60)
rank(X§") < r, X§' >0, (6d)

where X;; € RPi*Pi. When i # j, problem (4) is written as
min J = fi; (X
X;.Ni.N,.Y.Z Xy

S.t. gk,j(X,j) <0, k=1,..., Cij,

(7a)
(7b)

e _ [ X Ni

Xg = [N].T Ir]’ (7c)

rank(|:§ g])SZV, (7d)
Y XZ.X - 0 7
xpr oz |50 7o

where X;; € RPI>Pi,

Therefore, through decomposition and reformulations
expressed in (6) and (7), the dimensions of the rank constraint
and positive semidefinite constraint can be reduced from n x n
to (r+p;) X (r+p;) and (2r+p;+p;) X 2r+p;+p;), respectively,
in each subproblem. For large-scale RCSPs with n > 2r, the
scale of the subproblem can be significantly reduced via the
decomposition scheme.

B. A Local Solver via lterative Rank Minimization
Algorithm

The next step applies a local solver, named IRM, developed
in [2] to solve all subproblems. The IRM algorithm can solve
general RCSPs with a guaranteed local convergence rate and
is thus applied here to solve all decomposed subproblems in
the distributed framework. Based on the fact that for X € S",
if its rank is smaller than r, then it has at least n — r zero
eigenvalues.

Therefore, by sorting the eigenvalues of X, it holds that
VIXV = 0, where V € R"™ ("7 represents the correspond-
ing eigenvectors of the n — r smallest eigenvalues of X. IRM
is to gradually reduce the n — r smallest eigenvalues to zero
through iterations to satisfy the rank constraint while mini-
mizing the cost function. More details of the IRM algorithm
can be referred to [2]. When applying the IRM method to the
RCSP in (1), each iteration is formulated as

miln J=f X + olé (8a)
X
st. gk XH <0, k=1,....c, (8b)
ey — (VEHTXIVEL > 0, (8¢)
<t Xesn, (8d)

where X/ is the matrix to be optimized at the /th iteration of
the IRM method. Constraint (8c) provides an upper bound for
VIXV. o is a weighting factor for ¢/, which is increasing
along with the iterations. By iteratively solving the convex
optimization problem (8) and minimizing ¢/ as a penalty
term of the objective function, the rank constraint can be
gradually approached. Through the IRM approach, each sub-
problem of RCSP in the distributed framework can be solved
independently with guaranteed local convergence.

C. Coordination Scheme in the Distributed Framework

The decomposition scheme may lead to coupled subma-
trices in the decomposed subproblems. As each subproblem
is solved independently, we cannot reach a consensus on the
coupled submatrices for the local solutions from different sub-
problems. Therefore, a coordination scheme based on proximal
minimization is designed to reach a consensus on the coupled
elements. At each step &, subproblems of RCSPs are solved
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independently (two categories need to be considered for i = j
and i # j) with penalty terms to drive the coupled submatrices
to reach the consensus.

When i = j, the RCSP subproblem at the hth step is
formulated as

min J = f;;(X%) + nfINF - NI (92)
XN/
s.t. (6b), (6¢), (6d) (9b)

where N[h*] is the average solution of N; obtained from all
coupled subproblems at the last step & — 1, n/f is a weight-
ing factor at the hth step, and {n’f} is an increasing sequence.
For the remaining submatrices involved in functions fj; and
gkii» k=1,...,c, they are set as given constants with values
obtained from the last step & — 1.

Similarly, when i # j, the RCSP subproblem at the Ath step
is formulated as

Lomin = X0+ INF - N
X! N/.NLY.Z
+ N =N (100)
s.t. (7b), (7c), (7d), (Te) (10b)

where n}f and r]é’ are weighting factors at the hth step and
they are increasing over iterations. Specifically, they are set as
exponentially increasing functions in this letter. By consider-
ing the norm of Nfl - N?_l and N — N/—1 as penalty terms
in the objective function, the goal is to gradually reduce the
gap between N” and N"~! iteratively.

At each step h, after solving all subproblems (9) and (10) in

parallel via the local IRM solver, the submatrices of XZ and
Nf’ can be obtained independently. For every submatrix that is
involved in multiple subproblems, the average of each coupled
submatrix will be computed and used in the penalty term in the
next step. The penalty terms in (10) only require communica-
tion with its neighboring subproblems involving X;; to obtain
N[h*] and N,}.“]. In other words, the rank constraint can be
satisfied in a distributed manner without global communica-
tion. However, considering general RCSPs with fully coupled
convex constraints, i.e., gx(X) < 0, k = 1,...,c, that are
not separable, aggregation among all subproblems is required
to obtain N for coordinating the coupled convex constraints
in the next step & + 1, After obtaining N, X” is updated as
X" = N*(N")T. Assume that the algorithm converges at hth
iteration, then the optimized N* and X* are determined by N”
and X"

The distributed optimization algorithm for RCSPs is sum-
marized as below in Algorithm 1.

D. Optimality Analysis of Distributed Solution

The proximal minimization algorithm has been developed
to solve centralized/distributed convex optimization prob-
lems [12], [13]. With an appropriate selection of the weighting
factors, e.g., {nh}, of the penalty terms, the proof of con-
vergence for the proximal minimization algorithm has been
provided under some assumptions, e.g., the objective func-
tion is Lipschitz continuous on the constrained set [12], [13].
Therefore, within a local compact neighborhood of RCSP’s

Algorithm 1 Distributed Optimization Algorithm for RCSPs

Require: Problem parameters g, 7, f, initial guess NO, and
algorithm parameter € and /.y
Ensure: Matrix X*
1: Decompose X to formulate subproblems (6) and (7);
2 While || X" = X" 1| > € && h < hypax:
3: Solve subproblems (9) and (10) via IRM to obtain
{XZ., Nf‘} and {XZ., Nf‘, Nj}f}, respectively;
4: Aggregating all the obtained Nf? by averaging the coupled
elements and update N~ X",
5: h = h+ 1, update 1711”1
6: end while
7. return N* = N, X* = X"

h+1

> 17{' and n,"" > ng

stationary point, the local convergence can also be obtained
for Algorithm 1 based on the proximal minimization. However,
considering the rank constraint and matrix decomposition, the
optimality conditions for subproblems at the converging point
are not directly applicable to the original RCSP. Therefore, in
the following we provide an analysis of optimality conditions
at the converging point.

Proposition 1: Assume  the  distributed  algorithm
(Algorithm 1) converges to {N*,X*} at the hth iteration,
which satisfies N* = N* and X" = X*, then the converged
solution {N*, X*} is a stationary point of problem (2).

Proof: To complete this proof, we will first analyze the prop-
erties of solutions for the distributed subproblems (9) and (10).
Note that in subproblem (9), the constraints rank((Xg?‘)h) <r
and (x;f)_h > 0 is equivalent to X" = N*(N")T. Additionally,
as Nf’ = N7, problem (9) can be equivalently rewritten as

min  J = fi:(X})
th’_ cRPi %Pi
stoga(Xi) <0, k=1,2,...,ci,
h_ NN T
Xi =N/ (N)". (1D
Then, the Lagrangian of problem (11) can be written as
Cii
L=fXI+ Y (g (X)) —Tr(®y, Xjp — Nf(NH)T)
k=1
where uy > 0,k = 1,2,...,¢y, and &; € SP' are the
Lagrange multipliers for constraints gk,ii(Xﬁ) < 0 and Xfll =
N7 (N;-*)T, respectively. Then, the Karush-Kuhn-Tucker (KKT)
conditions of (11) can be expressed as

L <

— =L X0+ Y (i (X)) — i =0, (12a)
axﬁ Py
(g i (XE) =0, k=1,..., ¢y (12b)
Tr(®;, XE - N NHT) = 0. (12¢)

As for problem (6), the Lagrangian can be expressed as
Cii
L=F£fiXp) + Y halra(Xi) — Tr(Wi, X5 —N/(N)T)
k=1
where Ay > 0 € Rk = 1,2,...,c, and ¥; € SPi are
the Lagrange multipliers. Then its KKT conditions can be
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expressed as

aE Cij

— = XD+ D) i (X)) — Wi =0, (13a)
X! P

AL Y

o = 20N = 0, (13b)
M(gri(Xi)) =0, k=1,....c, (13¢)
Tr(¥;, X — N NHT) = 0, (13d)

Let W; = @y, A = pg, N* = N7, then the KKT condition
of (6) and (11) are exactly the same. Therefore, the solution
{Nf‘, )_(Z-} is a stationary point of problem (6).

Similarly, problem (10) can be equivalently rewritten as

min_J = f(X}) (14a)
XgeRﬂzxﬂ]

stogeXp) <0, k=1,2,....cj.  (14b)

X} =Nf(NH', (14c)

Then, the Lagrangian of problem (14) can be written as
Cij
L=FXE)+ Y m(geiXP) — Tr(dy, XJ — NF(NHT)
k=1
where pup > 0,k = 1,2,...,c, and ®; € RP>*Pi are the
Lagrange multipliers. Then, the KKT conditions of (14) can
be expressed as

i
oL .
o = X0+ ki (X) — @5 =0, (150
i k=1
(g (XiD) =0, k=1,.... ¢, (15b)
Tr(dy, X} — NF(NHT) = 0. (15¢)
As for problem (7), the Lagrangian can be expressed
C[j
L=FX+ Y Mg (X)) — Tr(wy, X — NI(NHT)
k=1
where Ay > 0,k = 1,2,...,¢c, and ¥;; € RPP*P are Ehe
Lagrange multipliers. Let W;; = @, Ay = g, Nfz = N?‘,

N;’ = Nj’-“, then the KKT condition of (7) and (14) are exactly

*} is also

the same. Therefore, we can conclude that {Nf, N]’-k, )_(U

a stationary point of problem (7).
The Lagrangian of problem (2) is written as

L=fX)+ ) 8(@X) - Tr(@ X -NN'),  (16)
k=1

where §; > 0, and ® € S". Then the KKT conditions of (2)
can be expressed as:

AL -

x =X+ > a(g (X)) — @ =0, (17a)
k=1

L N = 0, (17b)

N

me@X)) =0, k=1,...,c, (17¢)

Tr(®, X — NNT) = 0. (17d)

(a) Original Image (b) Corrupted Image (c) Denoised Image
without noise with noise (distributed)

n
"

(d) Denoised Image (IRM) (e) Denoised Image (SVP)

Fig. 1. Image noise reduction results.

Dy Dy

Let 6y = ur and & = , we have

S - Pk
that the KKT conditions in (12) and (15) are the exact KKT
conditions of problem (2). Therefore, we can conclude that
the corresponding solution (N*, X*) is a stationary point of
problem (2). [ |

IV. SIMULATION RESULTS

This section presents the simulation results for the image
noise reduction problem to validate the effectiveness and effi-
ciency of the distributed optimization framework for RCSPs.
The simulation is run on a laptop with a 2.7 GHz processor
and 16 GB memory. The image noise reduction problem is to
restore corrupted images with noise and/or partial pixels miss-
ing. We consider an 8-byte gray-scale picture, where the color
in each pixel can be represented by an integer in the range
[0, 255]. Thus, the picture can be represented as a low-rank
matrix. Then, recovering a corrupted image is classified as a
low-rank matrix completion problem, which can be formulated
as a RCSP:

min
XeRan
s.t. rank(X) < r,

1
7= 7 IMa(X = Xo)|
(18)

where Xo € R™" is the corrupted picture with noised and
missing pixels, € € R™" is a matrix with the available
indices of the noised or missing pixels. Specifically, the func-
tion Mq(Z) is defined as Mq(Z) = 0 for (i, j) € 2, otherwise
Mq(Z) = Z(i,j). The upper bound of rank on the unknown
matrix X is denoted by r. The value of r is estimated by cal-
culating the number of the eigenvalues of Xy greater than a
threshold aX,qy, Where A,y is the largest eigenvalue (abso-
lute value) of matrix Xg, and « is a parameter to control the
effect of noise reduction, which is set as 0.2 in this case.
The distributed optimization algorithm is applied to the
noise reduction problem, where Fig. la presents the original
image without any noise, and Fig. 1b is the corrupted image
with both random noise and fixed pattern noise (FPN). We set
the Gaussian distribution of random noise as N ~ N (0, 9),
and the FPN ratio 8 = 4%. In the presented case, the matrix
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(a)  Corrupted (b) Denoised (¢)  Corrupted (d) Denoised

Fig. 2. Image noise reduction of two cases.

to be optimized is X € R¥?*32, which is decomposed into

16 x 16 independent subproblems that can be calculated in
parallel. The noise reduction result using the distributed algo-
rithm is shown in Fig. Ic, which demonstrates the effect of
the noise reduction.

In this case, starting with the initial guess of X as an all-
ones matrix, it only requires 7 = 3 steps for the distributed
algorithm to converge. When using a single computing unit to
carry all subproblem calculations in sequence, it requires 122
mins to find a converged solution. It indicates that when imple-
menting the distributed framework with parallel calculations
for all 196 subproblems, the computation time is expected to
be 196 times faster compared to the sequential computation of
all subproblems using a single computation unit, which leads
to an estimated computation time of around 37 seconds for
the distributed algorithm.

For comparison, the same noise reduction problem is solved
by IRM without decomposition in a centralized manner,
which takes 290 seconds to find a converged solution. The
denoised result is provided in Fig. 1d. Specifically, the objec-
tive value of the centralized and distributed algorithms are
123.25 and 12.28, respectively. Compared with the centralized
algorithm, the distributed optimization algorithm demonstrates
much improved denoising effects. Moreover, by implement-
ing the distributed framework with parallel computation of all
decomposed subproblems, the computation time has an order
of magnitude reduction.

Furthermore, to benchmark the performance of the proposed
distributed algorithm, we also implemented the singular value
projection (SVP) algorithm [15], [16] to solve the same noise
reduction problem, which yields an objective value of 110.74,
as shown in Fig. le. It takes 0.25 seconds for the SVP to con-
verge, which is faster than the proposed algorithm. However,
when solving each subproblem in (9) or (10) via the interior
point method, the computational time complexity is O(ng) [2],
where ny denotes the dimension of submatrix X{* or X%*. On
the other hand, the computational time complexity of SVP is
O(n®) due to the SVD operation in each iteration, where n
is the dimension of the original unknown matrix. Therefore,
when n >> ny, the distributed framework will demonstrate
the computational advantage in terms of scalability.

In addition, to verify the robustness of the proposed
approach, extensive simulation cases are generated with ran-
dom noise distributions. Due to the space limitation, two
randomly selected cases are shown in Fig. 2. In the con-
ducted 50 cases, all of them yield a converged solution,
which indicates the robustness of the proposed distributed
algorithm. The mean objective values of the centralized and
distributed method are 119.12 and 13.07, respectively. Besides,
the average computation time per computing unit with overall

steps of the centralized and distributed method are 249.17 sec-
onds with 5.2 steps and 39 seconds with 2.3 steps, respectively.
In summary, the simulation examples verify the fast conver-
gence, scalability, and robustness of the proposed distributed
optimization algorithm.

V. CONCLUSION

This letter develops a distributed optimization algorithm
based on matrix decomposition and proximal minimization
for solving rank-constrained semidefinite programs (RCSPs).
By decomposing the RCSP into a set of subproblems, the
dimension of each subproblem is greatly reduced and the
subproblems can be solved in parallel via a local solver.
The computational efficiency, robustness, and scalability are
verified by applying the distributed algorithm to the image
noise reduction problem. Thus we argue that the proposed
distributed algorithm can serve as a promising solver for
large-scale optimization problems with rank constraints.
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