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A Unified Optimization Algorithm for Bang-bang
Optimal Control

Chaoying Pei ∗, Sixiong You † and Ran Dai‡
Purdue University, West Lafayette, IN, 47907

Jeremy R. Rea§

NASA Johnson Space Center, Houston, TX, 77058

This paper proposes a unified algorithm based on iterative second-order cone programming
(SOCP) to solve bang-bang optimal control problems. For a bang-bang optimal control problem,
the control values are constrained at the upper or lower bound. We first formulate the bang-bang
optimal control problem as a nonconvex quadratically constrained quadratic programming
(QCQP) problem by expressing the bang-bang control profiles as quadratic equality constraints.
Then an iterative algorithm is proposed to solve nonconvex QCQPs, where each iteration
is formulated as a SOCP problem. To obtain robust convergence of the proposed iterative
algorithm under random initial guess, a multi-stage framework, combined with the relaxation
technique, is introduced. To be specific, in the first stage, the QCQP problem is reformulated,
where the terminal equality constraints are removed and handled as weighted penalty terms
in the objective function. Together with the relaxed bang-bang constraints, the reformulated
problem in the first stage is solved via the iterative SOCP and its solution is used as the initial
guess for the second stage. In the second stage, the bang-bang constraints of the original
problem are considered to obtain the final solution. Finally, the proposed algorithm is applied
to the fuel-optimal powered descent guidance problem, and the effectiveness and robustness of
the proposed algorithm are verified via numerical simulations.

I. Introduction
This paper investigates a class of optimal control problems (OCPs), where the control profile is restrained to be

bang-bang control. Bang-bang control, also called on-off control, refers to the control profile that switches abruptly
between the lower bound and the upper bound. In the past decades, bang-bang optimal control has wide application in
various engineering fields, such as powered descent guidance [1, 2], entry guidance [3], and collision avoidance control
[4]. Assorted algorithms have been developed to solve the bang-bang OCPs. For example, work in [5] searches the
optimal switching points for a time-optimal bang-bang control system by allowing the initial states to be optimized
along with the time. In [6], the control parametrization enhancing transform method has been developed to calculate
the switching times as well as the singular control values. Besides, nonlinear programming has also been applied to
solve the bang-bang OCPs [7]. However, there is no unified approach to solve general bang-bang OCPs that guarantee
yielding an exact bang-bang control profile while optimizing the desired performance index.

By expressing the bang-bang profile as quadratic equality constraints and employing the discretization techniques, a
bang-bang OCP can be reformulated as a nonconvex quadratically constrained quadratic programming (QCQP) problem.
The quadratic equality constraints on the bang-bang control profile guarantee that the obtained control solution is an
exact bang-bang curve when the quadratic equality constraints are satisfied. QCQP is to minimize a quadratic objective
function subject to quadratic equality or inequality constraints, which has been applied in a wide range of optimization
problems, including but not limited to radar detection [8], signal processing [9] and path planning [10]. Extensive
numerical methods have been developed to solve nonconvex QCQPs, e.g., successive convex approximation (SCA) and
relaxation methods [11–13]. By approximating the nonconvex functions by a series of convex surrogates, SCA methods
solve a QCQP problem iteratively by formulating each iteration as a convex optimization problem. On the other hand,
two typical relaxation methods, reformulation-linearization technique [14] and semi-definite relaxation [15], have also

∗Graduate Research Associate, School of Aeronautics and Astronautics, 701 W. Stadium Ave, West Lafayette, IN
†Graduate Research Associate, School of Aeronautics and Astronautics, 701 W. Stadium Ave, West Lafayette, IN
‡Associated Professor, School of Aeronautics and Astronautics, 701 W. Stadium Ave, West Lafayette, IN; AIAA Member.
§Subsystem Manager, Flight Mechanics and Trajectory Design Branch, 2001 NASA Parkway - EG, 577058; AIAA Member.
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been applied to solve QCQPs. The Semi-definite relaxation method can find a lower bound on the objective function,
which, however, cannot guarantee an optimal solution or even a feasible one in general cases.

In this paper, we propose a unified optimization scheme using iterative second-order cone programming (SOCP)
to solve general bang-bang OCPs. Firstly, the discretization technique is applied to convert a bang-bang OCP into
a nonconvex QCQP problem. A QCQP can be converted into a semidefinite programming (SDP) problem with a
rank-one constraint on the unknown matrix. Next, combining matrix decomposition, the semidefinite constraints in
the rank-one constrained SDP can be replaced with second-order cone constraints, which are represented by convex
quadratic inequalities and can be solved more efficiently than SDP in general [16]. By formulating all the constraints as
linear or second order cone constraints, a QCQP is solved in a successive manner until it converges, where each iteration
is a convex SOCP problem.

To obtain robust convergence of the proposed iterative QCQP algorithm under random initial guess, a multi-stage
framework combined with the relaxation technique is introduced. To be specific, in the first stage, the QCQP problem
is reformulated, where the terminal equality constraints are removed and handled as weighted penalty terms in the
objective function. Together with the relaxation on the bang-bang constraints, the reformulated problem in the first stage
is solved via the iterative SOCP and its solution is used as the initial guess for the second stage. In the second stage, the
bang-bang constraints of the original problem are considered to obtain the final solution.

To verify effectiveness and robustness of the proposed algorithm, the multi-stage framework, together with the
iterative QCQP, is implemented in the fuel-optimal powered descent guidance problem. The quadratic equality constraints
are used to express the bang-bang control profile and then the powered descent guidance problem is formulated as a
QCQP problem through discretization. Comparative examples from a commercial nonlinear programming solver are
provided to demonstrate the computational advantages of the proposed algorithm.

This paper is organized as follows. Section II introduces the problem formulation, where the bang-bang OCP is
formulated as a general QCQP. The framework of the proposed multi-stage iterative SOCP method is detailed in Section
III. After that, numerical simulations are provided and analyzed in Section IV. Conclusions are addressed in Section V.

II. Problem Formulation

A. Original Bang-Bang OCP
Consider a bang-bang OCP formulated as

min
u(𝑡) ,𝑡 𝑓

J = 𝜙(x(𝑡 𝑓 ), 𝑡 𝑓 ) +
∫ 𝑡 𝑓

𝑡0

𝐿 (x(𝑡), u(𝑡))𝑑𝑡, (1a)

s.t. ¤x(𝑡) = 𝑓 (x(𝑡), u(𝑡)), (1b)
g 𝑗 (x(𝑡), u(𝑡)) ≤ 0, 𝑗 = 1, 2, . . . , 𝑔𝑛, (1c)
x(𝑡0) = x0, x(𝑡 𝑓 ) = x 𝑓 , (1d)
u ∈ U, (1e)

where x = [𝑥1, · · · , 𝑥𝑠1 ]𝑇 ∈ R𝑠1 represents the state vector, and u = [𝑢1, · · · , 𝑢𝑠2 ]𝑇 ∈ R𝑠2 is the control vector. The
initial state x0 at a given time 𝑡0, and the terminal state x 𝑓 are specified. The final time 𝑡 𝑓 is free. Furthermore,
g 𝑗 (x(𝑡), u(𝑡)) ≤ 0 represent the state and control constraints and 𝑔𝑛 is the number of the inequality constraints. The
control vector in (1e) is restrained by bang-bang constraints, expressed as

U =
{
u|𝑢𝑖 ∈

{
𝑢𝑚𝑖𝑛
𝑖 , 𝑢𝑚𝑎𝑥

𝑖

}
, 𝑖 = 1, · · · , 𝑠2

}
, (2)

where 𝑢𝑚𝑖𝑛
𝑖

and 𝑢𝑚𝑎𝑥
𝑖

represent the lower bound and the upper bound of the control variable 𝑢𝑖 , respectively. The
bang-bang control constraint on 𝑢𝑖 can be equivalently formulated as a quadratic equality constraint in the form of
(𝑢𝑖 − 𝑢𝑚𝑖𝑛

𝑖
) (𝑢𝑖 − 𝑢𝑚𝑎𝑥

𝑖
) = 0.

B. The QCQP Formulation of a Bang-Bang OCP
By applying the discretization techniques, problem (1) can be discretized into a finite number of discrete points,

represented by discrete state and control variables at each point. Accordingly, the dynamics in (1b) can be rewritten as

¤x =
xℎ+1 − xℎ

Δ𝑡
= 𝑓 (xℎ, uℎ), (3)
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where xℎ denotes the state variables at the ℎth node, ℎ = 1, ..., 𝐻, with 𝐻 being the number of discrete nodes.
Additionally, Δ𝑡 is the duration of the time interval between two adjacent nodes. Combining with (3), problem (1) can
be reformulated as

min
u(𝑡) ,Δ𝑡

J = 𝜙(x𝐻 , Δ𝑡) +
𝐻∑︁
ℎ=1

𝐿 (xℎ, uℎ)Δ𝑡, (4a)

s.t.
xℎ+1 − xℎ

Δ𝑡
= 𝑓 (xℎ, uℎ), ℎ = 1, 2, . . . , 𝐻, (4b)

g 𝑗 (x1, x2, . . . , x𝐻 , u1, u2, . . . , u𝐻 ) ≤ 0, 𝑗 = 1, 2, . . . , 𝑔𝑛, (4c)
x1 = x0, x𝐻 = x 𝑓 , (4d)
uℎ ∈ U, ℎ = 1, 2, . . . , 𝐻. (4e)

In the above problem, constraints and the objective function can be transformed into a quadratic form by introducing
new variables associated with quadratic equality constraints, except for those containing non-polynomial functions [17].
In addition, when an equality constraint is considered, it can be equivalently converted into two inequality constraints.
Then the discretized problem in (4) can be reformulated as an inhomogeneous QCQP problem, written as

min
x̄

1
2

x̄𝑇A0x̄ + b𝑇
0 x̄ + 𝑐0, (5)

s.t.
1
2

x̄𝑇A 𝑗 x̄ + b𝑇
𝑗 x̄ + 𝑐 𝑗 ≤ 0, 𝑗 = 1, 2, ..., 𝑁𝑖 ,

where x̄ = [x𝑇 , u𝑇 ] ∈ R𝑚 is the vector to be optimized, 𝐴 𝑗 ∈ R𝑚×𝑚 are symmetric matrices, b 𝑗 ∈ R𝑚 are known vectors
and 𝑐 𝑗 ∈ R are given constants, 𝑁𝑖 represents the number of the inequality constraints.

III. Methods for Solving QCQP problem

A. The Iterative SOCP Algorithm
First, the inhomogeneous QCQP problem in (5) is reformulated as a homogeneous rank-one constrained problem.

Considering the inhomogeneous QCQP (5), by introducing a new variable z = [x̄𝑇 , 1]𝑇 , problem (5) can be reformulated
as a homogeneous QCQP

min
z∈R𝑛+1

z𝑇Q0z, (6)

s.t. zTQ 𝑗z + 𝑐 𝑗 ≤ 0, 𝑗 = 1, ..., 𝑛,

where Q 𝑗 =

[
A 𝑗 b 𝑗/2

b𝑇
𝑗
/2 0

]
. Note that z𝑇Qz = Tr(Qzz𝑇 ), where Tr(·) represents the trace of a matrix. By denoting

Z = zz𝑇 ∈ R(𝑚+1)×(𝑚+1) , problem (6) can be expressed as

min
Z,z

Tr(Q0Z), (7)

s.t. Tr(Q 𝑗Z) + 𝑐 𝑗 ≤ 0, 𝑗 = 1, ..., 𝑛,
Z = zz𝑇 ,

where item 𝑍𝑖 𝑗 in matrix Z equals to 𝑧𝑖𝑧 𝑗 . For the constraint Z = zz𝑇 , it can be equivalently replaced by a rank-one
constraint, rank(Z) ≤ 1, associated with a semidefinite constraint Z ⪰ 0. Thus, problem (7) can be rewritten as a
rank-one constrained SDP problem in the form

min
Z

Tr(Q0Z), (8)

s.t. Tr(Q 𝑗Z) + 𝑐 𝑗 ≤ 0, 𝑗 = 1, ..., 𝑛,
rank(Z) ≤ 1,
Z ⪰ 0.
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Therefore, without loss of generality, we equivalently convert a general QCQP problem into a rank-one constrained
SDP problem. However, for problem (8), the rank-one constraint is still nonconvex and it is time consuming to solve
large-scale SDP problems.

In the second part, to improve the computational efficiency of the algorithm, the semidefinite constraint is replaced
by a set of second-order cone constraints. Here we denote a 2 × 2 sub-matrix of Z as

Z𝛽 =

[
𝑍 (𝑝, 𝑝) 𝑍 (𝑝, 𝑞)
𝑍 (𝑞, 𝑝) 𝑍 (𝑞, 𝑞)

]
,

where 𝛽 represents an integer pair (𝑝, 𝑞). In addition, two sets F and G are defined to describe the integer pairs,

F := {(𝑝, 𝑞) |𝑞 ≠ 𝑚 + 1},

G := {(𝑝, 𝑞) |𝑞 = 𝑚 + 1}.

In problem (8), we have z = [x̄𝑇 , 1]𝑇 and Z = zz𝑇 , which indicates that 𝑍 (𝑚 + 1, 𝑚 + 1) = 1. Therefore, for a 2 × 2
sub-matrix Z𝛾 , where 𝛾 ∈ G, we have

Z𝛾 =

[
𝑍 (𝑝, 𝑝) 𝑍 (𝑝, 𝑚 + 1)

𝑍 (𝑚 + 1, 𝑝) 1

]
.

Theorem III.1 [18] A rank-one symmetric semidefinite matrix has all of its 2 × 2 primal minors equal to zero, which
means all of its 2 × 2 sub-matrices are positive semidefinite with rank equals to one.

According to Theorem III.1, for problem (8), the semidefinite constraint Z𝛾 ⪰ 0 can be rewritten as

𝑍 (𝑝, 𝑝) ≥ 0,
𝑍 (𝑝, 𝑝) − 𝑍 (𝑝, 𝑚 + 1)2 ≥ 0,

which are linear and second-order-cone constraints. It is obvious that, if non-zero entries only exist at the last column,
last row and principal diagonal of the coefficient matrices, we only need to consider semidefinite constraints on the
sub-matrix Z𝛾 , where 𝛾 ∈ G. 𝑍 (𝑝, 𝑞) can be rewritten as a quadratic function, expressed as

𝑍 (𝑝, 𝑞) = 𝑧(𝑝)𝑧(𝑞) = 1
2
[(𝑧(𝑝) + 𝑧(𝑞))2 − 𝑧(𝑝)2 − 𝑧(𝑞)2] . (9)

By introducing a new vector y = [𝑦1, · · · , 𝑦ℎ]𝑇 , where 𝑦𝑖ℎ = 𝑧(𝑝) + 𝑧(𝑞), 𝑖ℎ = 1, . . . , ℎ, the pair (𝑝, 𝑞) ∈ F , and ℎ is the
number of cross terms that are involved in the set F , then (9) can be rewritten as 2𝑍 (𝑝, 𝑞) = (𝑦𝑖ℎ )2 − 𝑍 (𝑝, 𝑝) − 𝑍 (𝑞, 𝑞).
Let ẑ = [z𝑇 , y𝑇 , 1]𝑇 ∈ R(𝑚+ℎ+2) and Ẑ = ẑẑ𝑇 , then 2�̂� (𝑝, 𝑞) = �̂� (𝑛 + 𝑖, 𝑛 + 𝑖) − �̂� (𝑝, 𝑝) − �̂� (𝑞, 𝑞), 𝑖ℎ = 1, . . . , ℎ.
Since the original unknown vector z is now extended to ẑ, the coefficient matrices Q 𝑗 is now reformulated as
Q̂ 𝑗 ∈ S(𝑚+ℎ+2)×(𝑚+ℎ+2) such that Tr(Q 𝑗Z) = Tr(Q̂ 𝑗 Ẑ), 𝑗 = 1, . . . , 𝑛. Besides, considering that only non-zero entries
of Q̂ 𝑗 , 𝑗 = 0, . . . , 𝑛, will be converted into second-order cone constraints, the following definition is introduced.

Definition III.2 Let Q̂𝑡 =
∑𝑚

𝑗=0 abs(Q̂ 𝑗 ), where abs(Q̂ 𝑗 ) represents the element-wise absolute value of the matrix Q̂ 𝑗 ,
then we can define a set Ĥ as

Ĥ := {(𝑝, 𝑞) |𝑝, 𝑞 ∈ {1, ..., 𝑚 + ℎ + 2} & 1 ≤ 𝑝 < 𝑞 ≤ 𝑚 + ℎ + 2}.

Denote the 𝑘th entry in �̂� as 𝛽𝑘 , where 1 ≤ 𝑘 ≤ 𝐾, 𝐾 =
(𝑚+ℎ+1) (𝑚+ℎ+2)

2 . Then set K̂ is defined as

K̂ := {𝛽𝑘 |�̂�𝑡 (𝑝, 𝑞) ≠ 0 & 𝛽𝑘 ∈ Ĥ},

where �̂�𝑡 (𝑝, 𝑞) is the entry in 𝑝th row and 𝑞th column of matrix Q̂𝑡 . Similarly, we have

F̂ := {𝛽 𝑓 |𝑞 ≠ 𝑚 + ℎ + 2 & 𝛽 𝑓 ∈ K̂} = ∅,

Ĝ := {𝛽𝑔 |𝑞 = 𝑚 + ℎ + 2 & 𝛽𝑔 ∈ K̂}.
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With the above definition, the rank-constrained SDP problem in (8) can be rewritten as a SOCP problem with a rank-one
constraint,

min
Ẑ

Tr(Q̂0Ẑ), (10)

s.t. Tr(Q̂ 𝑗 Ẑ) + 𝑐 𝑗 ≤ 0, 𝑗 = 1, ..., 𝑛,

Ẑ𝛽𝑔
=

[
�̂� (𝑝, 𝑝) �̂� (𝑝, 𝑞)
�̂� (𝑞, 𝑝) �̂� (𝑞, 𝑞)

]
, ∀𝛽𝑔 ∈ Ĝ,

�̂� (𝑚 + 𝑖ℎ, 1) = �̂� (𝑝, 1) + �̂� (𝑞, 1), ∀𝛽 𝑓 ∈ F̂ , 𝑖ℎ = 1, . . . , ℎ,
�̂� (𝑝, 𝑝) ≥ 0, ∀𝛽𝑔 ∈ Ĝ,

�̂� (𝑝, 𝑝) − �̂� (𝑝, 𝑛 + 1)2 ≥ 0, ∀𝛽𝑔 ∈ Ĝ,
rank(Ẑ) ≤ 1.

Next, according to Theorem III.1, by decomposing the matrix 𝑍 , the rank-one constraint can be replaced by multiple
rank constraints applying on its 2 × 2 principle submatrices. Thus, problem (8) can be equivalently converted into a new
rank-one constrained SDP problem, expressed as

min
Ẑ

Tr(Q̂0Ẑ), (11)

s.t. Tr(Q̂ 𝑗 Ẑ) + 𝑐 𝑗 ≤ 0, 𝑗 = 1, ..., 𝑛,

Ẑ𝛽𝑔
=

[
�̂� (𝑝, 𝑝) �̂� (𝑝, 𝑞)
�̂� (𝑞, 𝑝) �̂� (𝑞, 𝑞)

]
, ∀𝛽𝑔 ∈ Ĝ,

�̂� (𝑚 + 𝑖ℎ, 1) = �̂� (𝑝, 1) + �̂� (𝑞, 1), ∀𝛽 𝑓 ∈ F , 𝑖ℎ = 1, . . . , ℎ,
�̂� (𝑝, 𝑝) ≥ 0, ∀𝛽𝑔 ∈ Ĝ,

�̂� (𝑝, 𝑝) − 𝑌 (𝑝, 𝑛 + 1)2 ≥ 0, ∀𝛽𝑔 ∈ Ĝ,
rank(Ẑ𝛽g

) ≤ 1.

For each 2 × 2 rank-one matrix Ẑ𝛽𝑔
, we define 𝜆1 and 𝜆2 as its two eigenvalues, and assume 𝜆1 ≤ 𝜆2. Correspondingly,

there are two eigenvectors v1
𝛽𝑔

and v2
𝛽𝑔

which have

𝜆1v1
𝛽𝑔

= Ẑ𝛽𝑔
v1
𝛽𝑔
, 𝜆2v2

𝛽𝑔
= Ẑ𝛽𝑔

v2
𝛽𝑔
. (12)

Combining the fact that Ẑ𝛽𝑔
is a rank-one semidefinite matrix, which indicates that 𝜆2 ≥ 𝜆1 and 𝜆1 = 0, we have

(v1
𝛽𝑔
)𝑇 Ẑ𝛽𝑔

v1
𝛽𝑔

= (v1
𝛽𝑔
)𝑇 (𝜆1v1

𝛽𝑔
) = 0. (13)

By introducing another independent variable 𝑟𝛽𝑔 ∈ R, the rank-one constraint rank(Ẑ𝛽𝑔
) = 1 can be reformulated as

𝑟𝛽𝑔 − (v1
𝛽𝑔
)𝑇 Ẑ𝛽𝑔

v1
𝛽𝑔

≥ 0, (14)

where 𝑟𝛽𝑔 = 0. However, we can not obtain the eigenvectors v1
𝛽𝑔

and v2
𝛽𝑔

before getting the exact Ẑ𝛽𝑔
.

Finally, in the last part, an iterative method is applied to approach the optimal eigenvectors by gradually reducing the
independent variable 𝑟𝛽𝑔 . To achieve this goal, a new problem can be formulated to minimize the original objective
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function, along with the penalty term associated with the rank-one constraint, expressed as

min
Ẑ

Tr(Q̂0Ẑ) + 𝜔𝑙

∑︁
𝛽𝑔 ∈Ĝ

𝑟𝛽𝑔 (15)

s.t. Tr(Q̂ 𝑗 Ẑ) + 𝑐 𝑗 ≤ 0, 𝑗 = 1, ..., 𝑛,

Ẑ𝛽𝑔
=

[
�̂� (𝑝, 𝑝) �̂� (𝑝, 𝑞)
�̂� (𝑞, 𝑝) �̂� (𝑞, 𝑞)

]
, ∀𝛽𝑔 ∈ Ĝ,

�̂� (𝑚 + 𝑖ℎ, 1) = �̂� (𝑝, 1) + �̂� (𝑞, 1), ∀𝛽 𝑓 ∈ F , 𝑖ℎ = 1, . . . , ℎ,
�̂� (𝑝, 𝑝) ≥ 0, ∀𝛽𝑔 ∈ Ĝ,

�̂� (𝑝, 𝑝) − �̂� (𝑝, 𝑛 + 1)2 ≥ 0, ∀𝛽𝑔 ∈ Ĝ,
𝑟𝛽𝑔 − (v1

𝛽𝑔
)𝑇 Ẑ𝛽𝑔

v1
𝛽𝑔

≥ 0, ∀ 𝛽𝑔 ∈ Ĝ,

where 𝜔𝑙 > 0 is the weighting factor for 𝛽𝑔 at the 𝑙th iteration. However, before finding Ẑ𝛽𝑔
for all 𝛽𝑔 ∈ Ĝ, we cannot

obtain its corresponding eigenvectors, v1
𝛽𝑔

. Therefore, an iterative SOCP algorithm is proposed to solve the QCQP
problem. The steps of the iterative SOCP are listed in Table 1.

Table 1 Flowchart of the Iterative SOCP Algorithm

Input: A 𝑗 , b 𝑗 , 𝑐 𝑗 , 𝑗 = 0, 1, ..., 𝑛, 𝜔𝑙 , 𝑙max, and 𝜖
Output: Unknown vector x
begin:
1) Calculate Q̂ 𝑗 , 𝑗 = 0, . . . 𝑛, according to the input
2) Compute Ẑ and v1

𝛽𝑔
with a random initial guess

3) for 𝑙 = 1, 2, ..., 𝑙max

4) Solve (15) to obtain solution Ẑ and 𝑟𝛽𝑔 ,
5) If

∑
𝛽𝑔 ∈Ĝ 𝑟𝛽𝑔 ≤ 𝜖 ,

6) break;
7) else
8) Update v1

𝛽𝑔
from eigenvectors of Ẑ𝛽𝑔

9) end if
10) 𝑙 = 𝑙 + 1
11) end for

B. Multi-stage Iterative Algorithm
To obtain robust convergence of the proposed iterative algorithm under random initial guess, a multi-stage iterative

algorithm is proposed, which includes two stages. In the first stage, the terminal boundary constraints are relaxed. To
be specific, when solving the bang-bang OCP, the initial guess of states are generated by integrating the dynamics
with random control variables and a random integration time step. The terminal values obtained from integrating the
dynamics with random control cannot satisfy the boundary constraints in general cases. These terminal boundary
constraints are relaxed by introducing slack variables 𝜁𝑘 , 𝑘 = 1, . . . , 𝑠1, that are handled as weighted penalty terms in
the augmented objective function. The quadratic equality constraints on the bang-bang control profile are also relaxed
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as upper and lowered bound constraints in the first stage. Accordingly, problem in (5) is reformulated as

min
x̄

1
2

x̄𝑇A0x̄ + b𝑇
0 x̄ + 𝑐0 +

𝑠1∑︁
𝑘=1

𝜇𝑘 · 𝜁2
𝑘 (16a)

s.t.
1
2

x̄𝑇A 𝑗 x̄ + b𝑇
𝑗 x̄ + 𝑐 𝑗 ≤ 0, 𝑗 = 1, 2, ..., 𝑁𝑖 − 2𝑠1. (16b)

1
2

x̄𝑇A𝑘+𝑁𝑖−𝑠1 x̄ + b𝑇
𝑘+𝑁𝑖−𝑠1

x̄ + 𝑐𝑘+𝑁𝑖−𝑠1 − 𝜁𝑘 = 0, 𝑘 = 1, 2, ..., 𝑠1. (16c)

where (16c) represents the terminal boundary constraints. The relaxed problem in the first stage is then solved by the
iterative SOCP algorithm.

For the second stage, the bang-bang constraints are reconsidered. The solution from the first stage is regarded as the
initial guess of the second stage. Using the iterative SOCP algorithm again, the formulated problem in the second stage,
which includes all constraints of the original problem, is resolved. The framework of the proposed multi-stage iterative
algorithm is presented in Table 2.

Table 2 Flowchart of the Multi-stage Iterative Algorithm

STAGE 1
Input: A 𝑗 , b 𝑗 , 𝑐 𝑗 , 𝑗 = 0, 1, ..., 𝑛, random initial guess x̄0, 𝜔𝑙 , 𝑙max, and 𝜖
Output: Unknown vector Ẑ
Begin: Reformulate the original QCQP problem (5) into relaxed problem (16)
according to the initial guess x̄0, and apply the iterative SOCP algorithm to solve it,
until the converged Ẑ is obtained.
STAGE 2
Input: The reformulated problem (16), bang-bang constraints (4e), 𝜔𝑙 , 𝑙max, and 𝜖
Ẑ from STAGE 1 as the initial guess,
Output: Unknown vector Ẑ
Begin: Apply the iterative SOCP algorithm to solve (16) with bang-bang constraints (4e),
until the converged Ẑ is obtained.

IV. Simulation Results
To verify the performance of the proposed algorithm, the two-degree-of-freedom (2-DoF) fuel-optimal powered

descent guidance (FOPDG) problem [1], which is a representative application of the bang-bang optimal control, is
solved by the proposed algorithm. In addition, comparative results from a commercial nonlinear-programming (NLP)
solver [19] are provided.

For the FOPDG problem, the dynamics of a vehicle equipped with a retro-propulsion system, in a Cartesian
coordinate, is given by

¤r = v, (17a)

¤v = g + T
𝑚
, (17b)

¤𝑚 = −𝜂 ∥T∥2 , (17c)

where r = [𝑥, 𝑧]𝑇 represents the position vector of the vehicle, v = [𝑣𝑥 , 𝑣𝑧]𝑇 is the velocity vector, g = [0,−𝑔0]𝑇 is
the vector of gravity acceleration (𝑔0 = 3.711 𝑚/𝑠2 is the gravity acceleration on Mars), T = [𝑇𝑥 , 𝑇𝑧]𝑇 represents the
engine thrust vector, 𝑚 is the vehicle mass, and 𝜂 is a positive constant associated with the effective exhaust velocity of
the rockets. The magnitude of the thrust vector T is bounded by a lower bound and an upper bound. Thus

𝑇𝑚𝑖𝑛 ≤ ∥𝑇 (𝑡)∥2 ≤ 𝑇𝑚𝑎𝑥 , ∀ 𝑡 ∈ [𝑡0, 𝑡 𝑓 ], (18)
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where 𝑡0 and 𝑡 𝑓 represent the starting time and the final time of the powered descent phase. According to the Pontryagin
minimum principle, the fuel-optimal thrust magnitude ∥T∥ is supposed to have a bang-bang profile [1], which means
∥T∥ should be at either the upper bound or the lower bound. Thus, the bounded constraint on the control magnitude in
(18) can be replaced by

∥𝑇 (𝑡)∥2 ∈ {𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥} , ∀ 𝑡 ∈ [𝑡0, 𝑡 𝑓 ] . (19)
To prevent the vehicle from touching the ground before landing, the glide-slope constraint is considered, which can

be written as
r ∈ C :=

{
r ∈ R2 :

r · e
∥r∥ ∥e∥ ≥ cos 𝜃

}
, (20)

where e is a unit vector in the direction of the z-axis and 𝜃 denotes the maximum of the glide-slope angle. Meanwhile,
due to the limited mass of fuel, the vehicle mass is subject to the constraint

𝑚(𝑡 𝑓 ) ≥ 𝑚𝑑𝑟𝑦 , (21)

where 𝑚𝑑𝑟𝑦 represents the structural mass of the vehicle. In the FOPDG problem, the initial states and terminal states
are specified as

𝑚(𝑡0) = 𝑚0, r(𝑡0) = r0, v(𝑡0) = v0, (22a)
r(𝑡 𝑓 ) = 0, v(𝑡 𝑓 ) = 0. (22b)

Then, the FOPDG problem can be summarized as

min
T,𝑡 𝑓

− 𝑚(𝑡 𝑓 ), (23a)

subject to ¤r = v, (23b)

¤v = g + T
𝑚
, (23c)

¤𝑚 = −𝜂 ∥T∥2 , (23d)
∥T(𝑡)∥2 ∈ {𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥} , ∀𝑡 ∈ [𝑡0, 𝑡 𝑓 ], (23e)

r ∈ C :=
{
r ∈ R2 :

r · e
∥r∥ ∥e∥ ≥ cos 𝜃

}
, (23f)

𝑚(𝑡 𝑓 ) ≥ 𝑚𝑑𝑟𝑦 , (23g)
𝑚(𝑡0) = 𝑚0, r(𝑡0) = r0, v(𝑡0) = v0, (23h)
r(𝑡 𝑓 ) = 0, v(𝑡 𝑓 ) = 0. (23i)

By applying the discretization technique, the above FOPDG problem can be reformulated as a QCQP problem. To
be specific, the continuous trajectory is discretized into H nodes represented by [𝑥𝑖 , 𝑦𝑖], 𝑖 = 1, · · · , 𝐻, at each discrete
node. In the first stage, the bang-bang control constraints (23e) are relaxed as the bounded constraints according to (18),
and the equality constraints on r 𝑓 and v 𝑓 which are not satisfied by the initial guess are also relaxed by introducing new
slack variables 𝜁𝑟 and 𝜁𝑣 , and the weighting factor 𝜇𝑟 and 𝜇𝑣 . Then according to the Euler discretization rule, the OCP
in (23) can be reformulated as a QCQP problem for the first stage, expressed as

min
[𝑇1 ,...,𝑇𝑁 ],𝑡 𝑓

− 𝑚𝑁 + 𝜇𝑟 · 𝜁2
𝑟 + 𝜇𝑣 · 𝜁2

𝑣 (24a)

subject to
𝑥𝑖+1 − 𝑥𝑖

Δ𝑡
= 𝑣𝑥𝑖 ,

𝑧𝑖+1 − 𝑧𝑖
Δ𝑡

= 𝑣𝑧𝑖 , (24b)

𝑣𝑖+1 − 𝑣𝑖
Δ𝑡

=
𝑇𝑥𝑖

𝑚𝑖

,
𝑣𝑖+1 − 𝑣𝑖

Δ𝑡
=
𝑇𝑧𝑖

𝑚𝑖

− 𝑔0, (24c)

𝑚𝑖+1 − 𝑚𝑖

Δ𝑡
= −𝜂𝑇𝑖 , 𝑇2

𝑖 = 𝑇2
𝑥𝑖
+ 𝑇2

𝑥𝑖
, (24d)

𝑧2
𝑖 ≥ 𝑥2

𝑖 · cot2 (𝜃), (24e)
𝑚𝑁 ≥ 𝑚𝑑𝑟𝑦 , (24f)
𝑚1 = 𝑚0, r1 = r0, v1 = v0, (24g)
r𝐻 − 𝜁𝑟 = 0, v𝐻 − 𝜁𝑣 = 0, (24h)
𝑇𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑚𝑎𝑥 (24i)
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where 𝑖 = 1, · · · , 𝐻, and Δ𝑡 represents the uniform time step. In addition, in the second stage, the bang-bang control
constraint (23e) on 𝑇𝑖 can be expressed as a quadratic equality constraint, (𝑇𝑖 − 𝑇𝑚𝑖𝑛) (𝑇𝑖 − 𝑇𝑚𝑎𝑥) = 0. Thus for the
second stage, problem (23) can be reformulated as

min
[𝑇1 ,...,𝑇𝑁 ],𝑡 𝑓

−𝑚𝑁 + 𝜇𝑟 · 𝜁2
𝑟 + 𝜇𝑣 · 𝜁2

𝑣 (25)

subject to (24b), (24c), (24d), (24e), (24f), (24g), (24h),
(𝑇𝑖 − 𝑇𝑚𝑖𝑛) (𝑇𝑖 − 𝑇𝑚𝑎𝑥) = 0.

Since the other constraints are expressed as linear or quadratic equalities/inequalities, the FOPDG is then reformulated
as a QCQP problem. After that, the proposed multi-stage iterative algorithm is applied to present the simulation
results. Here, to solve the SOCP problems in each iteration, a commercial solver Mosek [20] is used. In addition, the
parameters in (24) and (25) are set as 𝑔0 = −3.7114𝑚/𝑠2, 𝑚0 = 51.1 𝑡, 𝑚𝑑𝑟𝑦 = 0.8𝑚0 = 40.88 𝑡, 𝜂 = 4.53 × 10−4 𝑠/𝑚,
𝑇𝑚𝑎𝑥 = 640 𝑘𝑁 , 𝑇𝑚𝑖𝑛 = 240 𝑘𝑁 , 𝜃 = 86◦.

To verify the robustness and effectiveness of the proposed algorithm, 10 cases with random boundary conditions are
solved via the multi-stage iterative algorithm and the NLP method, where the initial states and the fuel consumption
of these cases are shown in Fig. 1 and Fig. 2. In Fig. 1, the ranges of the initial x-position, z-position, x-velocity
and z-velocity are [−1.1𝑘𝑚,−1𝑘𝑚], [7𝑘𝑚, 8𝑘𝑚], [20𝑚/𝑠, 23𝑚/𝑠], [−220𝑚/𝑠,−200𝑚/𝑠], respectively. From Fig. 2,
it can be found that all cases have a converged result using the multi-stage iterative algorithm and the NLP method.
However, for each case, the fuel consumption amount from the solution of the multi-stage iterative algorithm is less than
the corresponding one solved by the NLP method. In order to verify the accuracy of the proposed algorithm, the landing
errors from both methods are compared and presented in Fig. 3a and Fig. 3b, where the green and red points denote the
position/velocity errors from the proposed algorithm and the NLP method, respectively. Similarly, the terminal velocity
errors from both methods are shown in Fig. 3b. It can be found that the proposed algorithm can achieve smaller position
and velocity errors than those from the NLP method. In conclusion, compared with the NLP method, the proposed
algorithm can lead to higher accuracy. To show more details of the multi-stage iterative algorithm and the NLP method,
the complete solutions from both methods of one selected case are shown in Fig. 4 and 5, where the initial states of the
powered descent phase are specified as 𝑥(𝑡0) = −1025.8 𝑚, 𝑧(𝑡0) = 7403.9𝑚, 𝑣𝑥 (𝑡0) = 21.0𝑚/𝑠, 𝑣𝑧 (𝑡0) = −203.8𝑚/𝑠.

(a) Initial position for 10 cases (b) Initial velocity for 10 cases

Fig. 1 Initial position and velocity for 10 cases

As shown in Fig. 4a, for the multi-stage iterative algorithm, the terminal mass of the landing vehicle is 43.33 tons,
which indicates that the fuel consumption is 8.08 tons, and it takes 22.0 second for the multi-stage iterative algorithm
to converge. While for the NLP solver, the fuel consumption is 8.14 tons and the computational time for the NLP
method is 2.2 seconds. In Fig. 4b, the thrust magnitude provided by the proposed algorithm and the NLP solver is
presented, where the green, black, and blue curves represent the thrust magnitude, thrust components along the 𝑥-axis
and the 𝑧-axis, respectively. From the comparative results of the demonstration case, it can be observed that the thrust
magnitude obtained from the proposed multi-stage iterative algorithm is an exact bang-bang curve, while in the NLP
result, there is a slope between the upper bound and the lower bound. Figure 5 demonstrates the history of the position
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Fig. 2 Fuel consumption for 10 cases

(a) Position errors for 10 cases (b) Velocity errors for 10 cases

Fig. 3 Position and velocity errors for 10 random cases

and the velocity in the powered descent phase, which indicates that the position and velocity from two methods share
similar curves. Therefore, we can conclude that the multi-stage iterative algorithm can achieve more precise landing
compared with the NLP method.

All in all, from the comparative simulation results, it can be concluded that the proposed multi-stage iterative
algorithm has computational advantages in terms of accuracy, robustness, and cost value when solving Bang-bang OCPs.

V. Conclusion
In this paper, a multi-stage iterative algorithm is proposed to solve the bang-bang optimal control problem.

Effectiveness and robustness are verified by applying the proposed algorithm to the fuel-optimal powered descent
guidance problem. Simulation results show that for the bang-bang optimal control, the proposed method can find a
local optimum with the controls being exact bang-bang curves. Moreover, by comparing with the optimized solutions
obtained from the commercial nonlinear programming solver, it is verified that the proposed multi-stage iterative
algorithm has computational advantages in terms of accuracy, robustness, and cost value when solving the bang-bang
optimal control problem.
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