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This paper investigates the three-dimensional (3D) multi-point landing guidance (MLG)
problem with hazard avoidance by developing a mixed-input learning-based method to achieve
precise and fuel-efficient planetary landing in future Mars missions. Specifically, we aim to
find a safe, fuel-efficient landing point and generate a fuel-optimal trajectory simultaneously in
real-time. First, by introducing binary variables, the MLG problem is formulated as an optimal
control problem with quadratic constraints. Then, by formulating the Hamiltonian function,
the necessary conditions of optimality for the MLG problem are obtained, where the critical
parameters are identified to represent the complete optimal solution. After that, to find the
implicit relationship between the problem inputs and these critical parameters, a hybrid deep
neural network is constructed. To be specific, on the one hand, the contour maps of the landing
area, which are image inputs, are adopted to reflect the features of the pre-defined landing
area. On the other hand, the velocity and position vectors, which belong to numeric inputs,
are adopted to reflect the features of the initial state of the powered descent phase. Finally,
with the constructed hybrid deep neural network well trained, the mixed-input learning-based
optimal control solution can be computed onboard. To verify the effectiveness and accuracy of
the proposed method, the simulation results of 3D MLG problems are presented and analyzed.

I. Nomenclature

g = gravitational acceleration vector, m/s2

𝑔0 = gravitational acceleration at Mars surface, m/s2

𝐻 = Hamiltonian
𝐽 = objective function
𝑚 = lander mass, kg
𝑟 = radial distance from Mars center to the landing vehicle, m
r = position vector, m
𝑅0 = Mars radius, m
𝑡 = time, s
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T𝑐 = thrust vector, N
V = lander velocity vector, m/s
𝛼 = combustion efficiency of rocket, kg/[N·s]
𝜆 = adjoint variables
𝜈 = Lagrangian multiplier

II. Introduction
For the multi-point landing guidance (MLG) problem with hazard avoidance, the main purpose is to achieve safe, soft

and fuel-optimal landing with multiple pre-selected landing points [1–3]. Generally, the multi-point landing problem
includes two main parts: the target landing point selection and the optimal guidance commands generation [4, 5].

For the target landing point selection, several methods have been developed. In [1], the convex programming based
algorithm is developed to solve the MLG problem, where the landing point is selected via interpolating a look-up table of
the estimated propellant mass. In [6], via developing a new criterion, which estimates terrain safety, fuel consumption,
and touchdown performance, the best landing point can be determined as the solution of the reformulated problem. In
[7] and [4], the optimal sensitivity is applied to select the fuel-optimal landing site from a list of candidate landing sites
in the target landing region. Besides, in [8], on the basis of the ballistic analysis, the target landing point can be selected
in real-time.

The fuel-optimal landing guidance has also been extensively studied. As a special type of optimal control problem,
both direct and indirect methods have been applied. For the direct methods, the idea is to convert the time-continuous
optimal control problem into a parameter optimization problem via well-defined collocation methods. Then, the
nonlinear programming (NLP) solver [9–12] can be applied to solve the parameter optimization problem. However,
for most direct methods, the global convergence to a local optimum can not be guaranteed and a good initial guess of
the unknown variables is generally required. In addition, due to the nonconvex nature of the vehicle dynamics and
operational constraints, many relaxation methods [13, 14] and lossless convexification [15, 16] have been developed.
However, all these methods face a trade-off between performance and computational time. On the other hand, based
on Hamiltonian and first-order necessary conditions, indirect methods can convert the optimal guidance problem into
a two-point-boundary-value problem (TPBVP). To solve the obtained TPBVPs, approximation [17–19] and shooting
methods [20, 21] have been developed. However, existing methods cannot guarantee convergence to the exact solution
due to the sensitivity of adjoint variables. Besides, for optimal control problems with varying/uncertain parameters
in the dynamical model or states/controls, supervised learning and reinforcement learning has also been applied to
find optimal control solutions in real-time [22–25]. In summary, due to the huge computational burden of the entire
multi-point landing mission, the existing methods for solving the MLG problems tend to divide the whole mission
into two separate steps. In this paper, we aim to solve the landing point selection and the optimal guidance generation
simultaneously, which can generate the fuel-optimal trajectory from the start of the powered descent phase to a selected
landing point in one integrated approach.

Our previous work in [25] proposed a learning-based optimal control method to solve the pinpoint fuel-optimal
powered descent guidance problem in real-time. In this paper, we extend the learning-based and theory-supported
optimal control method to solve the MLG problem. Different from pinpoint powered descent guidance, one of the
challenges when solving the MLG problem is the additional requirement for selecting a target point from a pre-selected
target set. This decision needs to be made onboard after obtaining the landing area image, which involves heavy
computational loads for image processing and decision making. Therefore, to select a safe target point and generate an
optimal path guiding to the selected point in real-time, the mixed-input learning-based method (MILM) is applied to
solve the MLG problem, where both landing area images and numeric position/velocity vectors at the initial phase of the
landing mission are taken as mixed-inputs. To be specific, guided by the optimal control theory, the optimal solution to
the MLG problem is represented via a few critical parameters. Then, opposite to mapping the optimal controls and the
states directly, the proposed approach only maps the relationship between the identified critical parameters and the given
initial conditions. Besides, for the MLG problem, both the features of the desired target region and the initial states
are taken as initial conditions. To efficiently process the mixed-inputs data, a hybrid deep neural network is adopted.
The hybrid deep neural network has been widely applied to deal with mixed-inputs data, including but not limited to
language detection, medical field, signal processing and so on [26–28]. Finally, with the well-trained hybrid deep neural
network, the optimal trajectory to the selected landing point can be reconstructed in real-time via the identified critical
parameters.

This paper is organized as follows. In Section III, the formulation of the MLG problem with hazard avoidance
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is introduced. In Section IV, the MILM is described. In Section V, the simulation results of the MLG problem are
provided and analyzed. Conclusions are addressed in Section VI.

III. Problem Formulation
For the MLG problem with hazard avoidance, the landing vehicle is required to select a landing point from a target

region containing hazards and then guide the vehicle to the selected landing point with high precision. Motion during
the MLG is analyzed in a Cartesian coordinate system with the origin fixed to the surface of Mars. Without loss of
generality, we assume the landing vehicle can be treated as a point mass and the origin of the Cartesian coordinate is
located at the center of the target region. The 3D equations of motion of the landing vehicle are expressed as

¤r = V (1a)

¤V = g + T𝑐

𝑚(𝑡) (1b)

¤𝑚 = −𝛼∥T𝑐 (𝑡)∥ (1c)

where r = [𝑥, 𝑦, 𝑧]𝑇 represents the position vector, and V = [𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧]𝑇 represents the velocity vector. g = [0, 0, 𝑔]
is the constant acceleration vector due to gravity. In addition, 𝛼 is a constant value, which denotes the combustion
efficiency of a rocket. T𝑐 = [∥T𝑐 (𝑡)∥ sin 𝜃 cos 𝜙, ∥T𝑐 (𝑡)∥ sin 𝜃 sin 𝜙, ∥T𝑐 (𝑡)∥ cos 𝜃] is the thrust vector of the landing
vehicle, where ∥T𝑐 (𝑡)∥ is the thrust magnitude, 𝜃 is the angle between the thrust vector and z-axis, and 𝜙 is the angle
between the thrust projection on x-y plane and x-axis. Besides the nonlinear dynamics, there exist several control
and state constraints, including the upper and lower bounded thrust magnitude, i.e., 𝑇min ≤ ∥T𝑐 (𝑡)∥ ≤ 𝑇max, and the
glide-slope constraint on the position vector. The glide-slope constraint ensures that the vehicle is kept within a safe
distance from the ground until it reaches the landing point. The glide-slope constraint can be described as a convex
cone, expressed as

C = {r ∈ R2 :
(r − r 𝑓 )𝑇c

∥r − r 𝑓 ∥ · ∥c∥
≥ cos(𝛽)}, (2)

where c = [0, 0, 1]𝑇 is the unit vector of glide-slope cone axis, 𝛽 is the half-angle of the glide-slope cone, and
r 𝑓 = [𝑥 𝑓 , 𝑦 𝑓 , 𝑧 𝑓 ] is the position vector of the selected landing point. Then, the glide-slope constraint in (2) can be
simplified as

(𝑧 − 𝑧 𝑓 )2 sin2 𝛽 − ((𝑥 − 𝑥 𝑓 )2 + (𝑦 − 𝑦 𝑓 )2) cos2 𝛽 ≥ 0. (3)

Besides, to guarantee that the selected landing point locates in the target region, we assume that there are 𝑛 potential
landing points in the target region, and for the 𝑖th potential landing point, its position vector is expressed as r 𝑓 𝑖 . Then,
via introducing 𝑛 binary variables 𝑐𝑖 , the constraints on the terminal states can be expressed as

𝑛∑︁
𝑖=1

𝑐𝑖 = 1, (4a)

𝑛∑︁
𝑖=1

𝑐𝑖 (r 𝑓 − r 𝑓 𝑖) = 0, (4b)

𝑐𝑖 (𝑐𝑖 − 1) = 0, 𝑖 = 1, . . . , 𝑛 (4c)
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Finally, considering the feasibility of each potential landing point, the MLG problem can be formulated as

min
𝑡 𝑓 ,T𝑐

∫ 𝑡 𝑓

𝑡0

𝛼∥T𝑐 (𝑡)∥𝑑𝑡 +
𝑛∑︁
𝑖=1

𝑐𝑖𝐽 (r 𝑓 𝑖), (5a)

subject to ¤r = V, ¤V = g + T𝑐

𝑚(𝑡) , ¤𝑚 = −𝛼∥T𝑐 (𝑡)∥ (5b)

0 ≤ 𝑇min ≤ ∥T𝑐 (𝑡)∥ ≤ 𝑇max, (5c)
r(𝑡) ∈ C, ∀𝑡 ∈ [𝑡0, 𝑡 𝑓 ], (5d)
𝑚(𝑡0) = 𝑚wet, 𝑚(𝑡) ≥ 𝑚dry, (5e)
r(𝑡0) = r0, V(𝑡0) = V0, (5f)
𝑐𝑖 (𝑐𝑖 − 1) = 0, 𝑖 = 1, . . . , 𝑛, (5g)
𝑛∑︁
𝑖=1

𝑐𝑖 = 1,
𝑛∑︁
𝑖=1

𝑐𝑖 (r 𝑓 − r 𝑓 𝑖) = 0, (5h)

where 𝑚wet is the gross mass of the vehicle at the beginning of the MLG phase, 𝑚dry is the structural mass, 𝐽 (r 𝑓 𝑖) is the
estimated extra cost for the 𝑖th potential landing point. Our goal is to find the control vectors T𝑐 (𝑡) along the landing
phase and its duration 𝑡 𝑓 to minimize the overall equivalent fuel consumption

∫ 𝑡 𝑓

𝑡0
𝛼∥T𝑐 (𝑡)∥𝑑𝑡 +

∑𝑛
𝑖=1 𝑐𝑖𝐽 (r 𝑓 𝑖) while

satisfying all specified constraints. In the following section, the MILM is introduced to solve the MLG problem (5)
onboard.

IV. Mixed-input Learning-based Method

A. Necessary Conditions of Optimality
For the MLG problem formulated in (5), the augmented Hamiltonian is expressed as

𝐻 =𝜆1𝑣𝑥 + 𝜆2𝑣𝑦 + 𝜆3𝑣𝑧 + 𝜆4
∥T𝑐 (𝑡)∥ sin 𝜃 cos 𝜙

𝑚
+ 𝜆5

∥T𝑐 (𝑡)∥ sin 𝜃 sin 𝜙
𝑚

+ 𝜆6 (−𝑔 + ∥T𝑐 (𝑡)∥ cos 𝜃
𝑚

)

− 𝜆7𝛼∥T𝑐 (𝑡)∥ + 𝜇1 ((𝑧 − 𝑧 𝑓 )2 sin2 𝛽 − ((𝑥 − 𝑥 𝑓 )2 + (𝑦 − 𝑦 𝑓 )2) cos2 𝛽) + 𝜇2 (𝑚 − 𝑚𝑑𝑟𝑦) (6)

and the first-order conditions of optimality are written as

𝜕𝐻

𝜕∥T𝑐 (𝑡)∥
= 𝜆4

sin 𝜃 cos 𝜙
𝑚

+ 𝜆5
sin 𝜃 sin 𝜙

𝑚
+ 𝜆6

cos 𝜃
𝑚

− 𝜆7𝛼 (7a)

𝜕𝐻

𝜕𝜃
=

∥T𝑐 (𝑡)∥
𝑚

(𝜆4 cos 𝜃 cos 𝜙 + 𝜆5 cos 𝜃 sin 𝜙 − 𝜆6 sin 𝜃) = 0 (7b)

𝜕𝐻

𝜕𝜙
=

∥T𝑐 (𝑡)∥
𝑚

sin 𝜃 (𝜆5 cos 𝜙 − 𝜆4 sin 𝜙) = 0 (7c)

where 𝝀 = [𝜆1, . . . , 𝜆7]𝑇 is the adjoint variable set associated with the dynamic constraints and 𝝁 = [𝜇1, 𝜇2]𝑇 is the
Lagrange multiplier set associated with the state inequality constraints. The optimality condition in (7a) does not
explicitly contain the thrust magnitude ∥T𝑐 (𝑡)∥, which yields the optimal control solution, expressed as

∥T𝑐 (𝑡)∥ =


𝑇min,

𝜕𝐻
𝜕∥T𝑐 (𝑡) ∥ < 0

𝑇max,
𝜕𝐻

𝜕∥T𝑐 (𝑡) ∥ > 0
∈ [𝑇min, 𝑇max], 𝜕𝐻

𝜕∥T𝑐 (𝑡) ∥ = 0
(8)

As in our previous work [25], we have proved the following Lemma,

Lemma 1 (Lemma 1 in [25]) For the fuel optimal MLG problem with glide-slope constraint, the optimal solution of the
thrust magnitude is a bang-bang control with at most three sub-arcs, in the order max-min-max.
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Therefore, according to Lemma 1, for the studied problem (5), the optimal solution of the thrust magnitude is a
bang-bang control, which can be expressed as

∥T𝑐 (𝑡)∥ =
{
𝑇min,

𝜕𝐻
𝜕∥T𝑐 (𝑡) ∥ < 0

𝑇max,
𝜕𝐻

𝜕∥T𝑐 (𝑡) ∥ > 0
(9)

In addition, we also have proved the following proposition in [25],

Proposition 1 (Proposition 1 in [25]) For an optimal solution of the 3D MLG problem with glide-slope constraint, the
glide-slope constraint will only be active with nontrivial duration Δ𝑡 > 0 when the following equation is satisfied:

1√︁
(tan2 𝛽( ¥𝑍2 + 4 ¤𝑍2 ¤𝛾2 + 𝑍2 ¤𝛾4 + 𝑍2 ¥𝛾2 − 2𝑍 ¥𝑍 ¤𝛾2 + 4 ¤𝑍𝑍 ¥𝛾 ¤𝛾) + ¥𝑍2 + 2𝑔 ¥𝑍 + 𝑔2)

=
𝑚

∥T𝑐 (𝑡)∥
. (10)

For the studied MLG problem (5), we found that the equation (10) does not hold for any cases in the range we
have studied so far. Therefore, the glide-slope constraint will only be active at isolated points with duration Δ𝑡 → 0
in the studies cases. Additionally, considering that the adjoint variables 𝜆𝑖 , 𝑖 = 1, . . . , 7 do not necessarily have to be
continuous at the isolated point [25], 𝜆𝑖 , 𝑖 = 1, . . . , 7, are handled as piecewise functions and the switching points are
the isolated points.

For the optimal control, when an inequality constraint is inactive, the corresponding Lagrange multiplier equals to
zero. Thus, for the MLG problem, we have 𝜇1 = 0 when the glide-slope constraint (2) is inactive. Therefore, when
the glide-slope constraint is inactive, combining with the necessary conditions of adjoint variables, we have ¤𝝀 = − 𝜕𝐻

𝜕r ,
which can be extended as

¤𝜆1 = −𝜕𝐻

𝜕𝑥
= 0 (11a)

¤𝜆2 = −𝜕𝐻

𝜕𝑦
= 0 (11b)

¤𝜆3 = −𝜕𝐻

𝜕𝑧
= 0 (11c)

¤𝜆4 = − 𝜕𝐻

𝜕𝑣𝑥
= −𝜆1 (11d)

¤𝜆5 = − 𝜕𝐻

𝜕𝑣𝑦
= −𝜆2 (11e)

¤𝜆6 = − 𝜕𝐻

𝜕𝑣𝑧
= −𝜆3 (11f)

By integrating (11), it is straight forward to find the solutions of adjoint variables, written as

𝜆1 = 𝐶1, 𝜆2 = 𝐶2, 𝜆3 = 𝐶3, 𝜆4 = −𝐶1𝑡 + 𝐶4, 𝜆5 = −𝐶2𝑡 + 𝐶5, 𝜆6 = −𝐶3𝑡 + 𝐶6, (12)

where 𝐶𝑖 , 𝑖 = 1, . . . , 6, are constant and can be determined from the value of 𝝀 at the initial point or isolated point.
Then, for each segment between the isolated point, via combining (12), (7b) and (7c), we have

tan 𝜙 =
𝜆5
𝜆4

(13a)

tan 𝜃 =
𝜆4
𝜆6

(cos 𝜙 + 𝜆5
𝜆4

sin 𝜙) = 𝜆4
𝜆6

(cos 𝜙 + tan2 𝜙 cos 𝜙) = 𝜆4
𝜆6 cos 𝜙

. (13b)

By substituting the value of 𝝀 in (13) using the solution obtained from (12), the optimal thrust direction angles, 𝜙 and 𝜃

can be determined by

tan 𝜙 =
−𝐶2𝑡 + 𝐶5
−𝐶1𝑡 + 𝐶4

(14a)

cos 𝜙 tan 𝜃 =
−𝐶1𝑡 + 𝐶4
−𝐶3𝑡 + 𝐶6

. (14b)
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Therefore, when 𝐶𝑖 , 𝑖 = 1, . . . , 6, are determined, we can compute 𝜙 and 𝜃 accordingly. Besides, with 𝜇1 = 0, the
optimality conditions of the MLG problem with the glide-slope constraint are the same as those of the MLG problem
without the glide-slope constraint. In literature [29], it has been rigorously proved that under the constant-gravity
assumption, the optimal solution of the minimum-fuel powered descent guidance problem without the glide-slope
constraint has at most three sub-arcs, with the thrust magnitude in the order of max-min-max. In other words, there
are at most two switching time points, shown in Fig. 1, where 𝑡𝑠1 denotes the switching time from maximum thrust
magnitude to minimum thrust magnitude, 𝑡𝑠2 is the switching time from minimum thrust magnitude to maximum thrust
magnitude, and 𝑡 𝑓 is the terminal time. For the cases that have only one sub-arc, 𝑡𝑠1 and 𝑡𝑠2 are set as the terminal time
𝑡 𝑓 if it is the maximum sub-arc, otherwise 𝑡𝑠1 is set as the starting time 𝑡0 and 𝑡𝑠2 is set as the terminal time 𝑡 𝑓 . For
cases that have two sub-arcs, 𝑡𝑠2 is set as the terminal time 𝑡 𝑓 if the two sub-arc are in the order of max-min, otherwise
𝑡𝑠1 is set as the starting time 𝑡0. Therefore, once 𝑡𝑠1, 𝑡𝑠2 and 𝑡 𝑓 are obtained, the optimal control profile of the thrust
magnitude, ∥T𝑐 (𝑡)∥, during the powered descent phase can be determined.

Fig. 1 Bang-bang control and switching time 𝑡𝑠1, 𝑡𝑠2

From the above analysis on necessary conditions, the optimal guidance law for the 3D MLG problem can be
determined once the following parameters, which are named critical parameters, are obtained:

1) The switching time 𝑡𝑠1 and 𝑡𝑠2 for the bang-bang control;
2) Duration of the powered descent phase 𝑡 𝑓 ;
3) The glide-slope boundary touching time 𝑡𝑏 for each segment;
4) The coefficients 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6 for each segment.

Note that, if the glide-slope constraint is not active along the optimized trajectory, the fitted curves for tan 𝜙∗ and
tan 𝜃∗ cos 𝜙∗ only contain one segment, and the glide-slope boundary touching time 𝑡𝑏 is set as 𝑡 𝑓 . After determining
the above identified critical parameters, we can find the control switching time points from 𝑡𝑠1, 𝑡𝑠2 and the duration of
descent phase from 𝑡 𝑓 . Meanwhile, the piece-wise thrust direction angles 𝜃 and 𝜙 can be determined from corresponding
𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6 according to (14). Then the time-continuous optimal control vector T𝑐 (𝑡) during the powered
descent phase can be determined according to the switching time points and thrust direction angles 𝜃 and 𝜙. With the
optimal control profile determined, the state variables in continuous time can be obtained by integrating the vehicle
dynamics in (1) from 𝑡0 to 𝑡 𝑓 .

B. Dataset Generation
Based on the necessary conditions of optimality for the MLG problem, the identified critical parameters have been

derived. Then, to realize the learning-based method, the next step is to generate a dataset offline, where sufficient inputs
and outputs need to be determined and collected. In our previous work [25], the learning-based method has been applied
to solve the pinpoint MLG problem. As the landing point is fixed for the pinpoint powered descent guidance problem,
with a given initial position and velocity, the optimization problem only needs to generate an optimal path with a fixed
terminal condition. Therefore, the inputs of the dataset are the initial position and velocity vectors, and the outputs of
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the dataset are the identified critical parameters.
Different from the pinpoint powered descent guidance problem, one of the challenges for solving the MLG problem

is the additional requirement for selecting a target point from the pre-selected target set once the landing area image is
available. Therefore, to select a safe target point and generate the optimal path simultaneously in real-time, both the
landing area image and the initial states are considered as mixed inputs.

The primary standard for judging whether the selected landing area is feasible is the flatness and altitude of the
landing area. For the sake of simplicity, the contour map of the target region is adopted to represent the features of the
target landing region, which is handled as an image input. In addition, to reflect the features of the initial state of the
powered descent phase, the velocity and position vectors are adopted, which are taken as numeric inputs. Specifically,
the size of the input image is selected to be 64 × 64 × 1, which is shown in Fig. 2. It can be found the grayscale image is
adopted in this paper, and the altitude of each point is represented via its grayscale. Note that, all hazards in the target
landing area are randomly generated to imitate the Mars surface environments.

Fig. 2 The grayscale image of the target landing region

To generate the database, a unified algorithm based on iterative second-order cone programming (SOCP) is applied
to solve the MLG problem off-line [30]. The details of the SOCP algorithm used to solve each MLG cases is described in
Part I of this article [31]. Then, based on the obtained solutions, where the optimal states and controls are included, the
critical parameters can be further derived. To be specific, from solutions of the unified algorithm, the critical parameters
𝑡 𝑓 , 𝑡𝑠1 and 𝑡𝑠2 can be obtained directly. In addition, for the MLG in the studied range, the optimal thrust magnitude will
have only two sub-arcs, Min-Max. Therefore, only one switching time parameter needs to be considered here.

In addition, the remaining critical parameters, 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, cannot be derived directly from the off-line
optimal states and controls. From (14), it can be found that 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6 can be calculated by fitting he
optimized thrust angle 𝜃 and 𝜙 at all discrete nodes. However, due to the integration errors introduced by discretization,
the curve fitting results cannot get desired value of the critical parameters for most cases. Therefore, a nonlinear
optimization problem is further formulated. To improve the accuracy of the identified critical parameters, both the final
landing error and the glide-slope constraint are considered in the objective function, and the reformulated nonlinear
optimization problem can be written as

𝐽 =

𝑁𝑝∑︁
𝑖=1

max(0, 𝑥(𝑖)2 + 𝑦(𝑖)2 − 𝑧(𝑖)2 tan2 𝛽) + 𝛼∥V(𝑁𝑝) − 0∥2 + 𝛽∥r(𝑁𝑝) − r 𝑓 ∥2 (15)

𝑠.𝑡.(5b), (5c), (5d), (5e), (5f), (5g), (5h).
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where 𝑁𝑝 refers to the number of discrete nodes during the MLG phase, 𝛼 and 𝛽 denote the coefficients for the velocity
error and position error, respectively. Then, with all the constraints of (5) considered, the curve fitting problem can
be further formulated as an optimization problem. Moreover, as only 20 discrete nodes are adopted for the unified
algorithm, the obtained time parameters 𝑡𝑠 and 𝑡 𝑓 are also not very precise. Therefore, the terminal time 𝑡 𝑓 and switching
time 𝑡𝑠 are also optimized to improve the accuracy of all identified critical parameters. Besides, (14) can be further
simplified. Let the numerator and denominator on the right side divided by 𝐶1 simultaneously, we can have

tan 𝜙 =
−𝐶 ′

2 + 𝐶 ′
5

−𝑡 + 𝐶 ′
4

(16a)

cos 𝜙 tan 𝜃 =
−𝑡 + 𝐶 ′

4
−𝐶 ′

3𝑡 + 𝐶 ′
6
. (16b)

where 𝐶 ′
𝑖
= 𝐶𝑖/𝐶1, 𝑖 = 2, 3, 4, 5, 6. In summary, for the MLG problem in the studied range, only 7 identified critical

parameters are finally considered, including 𝐶 ′
2, 𝐶

′
3, 𝐶

′
4, 𝐶

′
5, 𝐶

′
6, 𝑡𝑠 , 𝑡 𝑓 , which are the outputs of the generated dataset.

C. Hybrid Deep Neural Network
Considering the generated mixed-inputs dataset, where both image inputs and numeric inputs are included, the

hybrid deep neural network is adopted for data training. The framework of the constructed hybrid deep neural network
is shown in Fig. 3, containing two main parts. First, the convolutional neural network and multilayer perception network
are constructed independently to deal with image inputs and numeric inputs independently. After that, the extracted
features are concatenated and fed to multiple fully connected layers for regression.

Fig. 3 The framework of the constructed hybrid deep neural network

For the general convolutional neural network, four typical types of hidden layers are considered and combined,
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including convolutional layer, rectified linear unit (ReLU) layer, pooling layer, and bath normalization layer. For the
convolutional layer, a convolution operation is included, where the input images are resized and features of each filter
are collected for the following layer. In the ReLU layer, an activation function is applied, where the negatives of inputs
are eliminated, which can be effective to filter out useless information. As for the pooling layer, the spatial space of the
inputs is shrunk and the extracted features are remained, which is useful for reducing the computation load. Therefore,
it is usually inserted between two convolutional layers. For the batch normalization layer, the inputs are normalized
and the input data are divided into multiple mini-batch, which can dramatically reduce the number of training epochs
required to train deep networks. Therefore, for the MLG problem, considering the size of the image inputs is 64× 64× 1,
by trying different combinations of the four typical types of hidden layers, 8 convolutional layers with increasing number
of filters (32-32-64-64-128-128-256-256) are currently adopted. In addition, to avoid losing the image information
when combined with numeric inputs, the max pooling layer is added after every two convolutional layers, and the global
average pooling layer is added before concatenating.

For the numeric inputs, 1-2 hidden layers are adopted for the multilayer perception network, where the activation
functions are combing the hyperbolic tangent function and the ReLu function. Considering that for some critical
parameters, the loss function cannot always converge, the batch normalization layers are applied between input layer,
hidden layer, and output layer. Besides, to further improve the accuracy, the critical parameters, which are also outputs
of the hybrid deep neural network, are normalized to zero-mean vectors. To guarantee robust learning performance, 2-3
hidden fully connected layers are applied to the concentrated data, where the activation functions are also combination
of the hyperbolic tangent function and the ReLu function.

D. Mixed-input Learning-based Method
The flowchart of the proposed MILM is presented in Table .1, which can be divided into two parts. The off-line

part aims to generate the dataset and train the hybrid deep neural network, where four main steps are included. First,
problem (5) is discretized and reformulated as a nonconvex quadratically constrained quadratic programming (QCQP)
problem. Then, the unified algorithm proposed in [31] is adopted to find the discrete optimal solutions with different
initial conditions and landing regions. Second, guided by the optimal control theory, a few critical parameters are
identified to represent the optimal solution to the MLG problem. To be specific, 7 critical parameters are identified
in this paper, including 𝐶 ′

2, 𝐶
′
3, 𝐶

′
4, 𝐶

′
5, 𝐶

′
6, 𝑡𝑠 , 𝑡 𝑓 . After that, via the reformulated nonlinear optimization problem

(15), the values of these identified critical parameters are calculated. Via collecting the identified critical parameters as
outputs, and the features of the desired target region and the initial states as inputs, the dataset is constructed. Finally,
based on the generated dataset, the hybrid deep neural network is constructed and trained off-line to map the relationship
between inputs and outputs.

For the on-line part, with the given initial states and descent image, the trained hybrid deep neural network is utilized
to calculate the values of the identified critical parameters. After that, the demanded optimal control commands can be
reconstructed from the calculated critical parameters in real-time.

V. Simulation
To verify the effectiveness of the proposed MILM, simulation results of MLG are presented and analyzed. In

addition, the unified algorithm based on iterative SOCP [31] is also applied for comparison. In this paper, all simulations
were run in Matlab environments on a 2.1 GHz Laptop with 16 GB RAM. The problem parameter settings are listed in
the following Table 2 and can be referred to [25]:

To test the effectiveness of the proposed MILM, for the generated dataset, the initial states are randomly generated
from the following ranges: 𝑧(𝑡0) ∈ [6700, 8100] m, 𝑥(𝑡0) = −1025 m, 𝑦(𝑡0) = −512 m, 𝑣𝑥 (𝑡0) ∈ [19, 23] m/s,
𝑣𝑦 (𝑡0) ∈ [38, 46] m/s, 𝑣𝑧 (𝑡0) ∈ [−220,−190] m/s, and hazard areas on the landing region are also randomly created.
Then, the size of the current dataset is selected to be 2624, where 20% are taken as testing dataset, 10% are taken as
validation dataset, and the remaining are taken as training dataset.

To handle the mixed inputs, the hybrid deep neural networks are constructed via the Matlab deep learning toolbox
[32]. The specified architecture of the constructed neural network for the critical parameter 𝑡 𝑓 is shown in Figure. 4.
By changing the structure of the hybrid neural network slightly, e.g., the layers of the multilayer perception network,
the hybrid neural network for the other critical parameters is obtained. To show the training results for all critical
parameters, the root means square error (RMSE) of all critical parameters is shown in Table. 3. It can be found that all
critical parameters can achieve similar precision. To further demonstrate the training results, the comparison of the
learned value and desired value of the critical parameters 𝑡 𝑓 is presented in Fig. 5. In addition, all the compared cases
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Table 1 Flowchart of mixed-input learning-based method

Algorithm: Mixed-input learning-based method
Off-line part
1. Generate the off-line discrete optimal solutions of problem (5) via the unified algorithm based on iterative SOCP;
2. Identify the critical parameters via the optimal control theory;
3. Extract values of the critical parameters based on (15), and generate the dataset;
4. Construct and Train the hybrid deep neural network to map the relationship between the inputs and outputs.

Specially, the inputs include the initial states of powered descent phase and the descent image of the target region.
the outputs are the identified critical parameters.

On-line part
5. According to the given inputs, calculate the values of the identified critical parameters via the trained

hybrid neural network;
6. Reconstruct the optimal control solution using the identified critical parameters.

Table 2 Problem parameter settings

Parameter 𝑔 (𝑚/𝑠2) 𝑚pdi (𝑘𝑔) 𝛼 (𝑠/𝑚2) 𝑚dry (𝑘𝑔) 𝑇max (𝑘𝑁) 𝑇min (𝑘𝑁)
Value −3.711400 51099 4.53 × 10−5 40880 640 240

are taken from the testing dataset. From Fig. 5, it can be found that the terminal time 𝑡 𝑓 is well fitted, where the mean
absolute relative error is 0.7%, and the mean absolute error is 0.31 seconds. Therefore, we can conclude that the trained
hybrid neural networks have relatively high precision.

Table 3 Training results for all critical parameters

Parameter 𝐶 ′
2 𝐶 ′

3 𝐶 ′
4 𝐶 ′

5 𝐶 ′
6 𝑡𝑠 𝑡 𝑓

RMSE 0.103 0.196 0.09 0.175 0.187 0.102 0.105

With the well-trained hybrid neural networks, the MLG problem is simulated, where [𝑥(𝑡0), 𝑦(𝑡0), 𝑧(𝑡0)] =

[−1025,−512, 7403.9] m, [𝑣𝑥 (𝑡0), 𝑣𝑦 (𝑡0), 𝑣𝑧 (𝑡0)] = [21.1, 42.0,−203.75] m/s, and the grayscale image of the target
landing region is shown in Fig. 6a. The results from MILM and the unified algorithm are shown in Fig. 6b. It can be
found that both MILM and the unified algorithm can select a feasible landing point and achieve safe landing. The fuel
consumptions of MILM and the unified algorithm are 8.19 tons and 8.14 tons, respectively, where the relative error is
only 0.6%. In other words, the proposed MILM can also achieve near optimal solutions. Besides, the time histories of
thrust, velocity, mass, and position of both methods are presented in Figs. 7 - 9. The landing velocity error of the MILM
is [𝑣𝑥 (𝑡 𝑓 ), 𝑣𝑦 (𝑡 𝑓 ), 𝑣𝑧 (𝑡 𝑓 )] = [1.48, 8.71, 0.57] m/s, and the terminal altitude error of the MILM is 𝑧(𝑡 𝑓 ) = 22.9 m. the
computational time for the MILM method is less than 0.2 seconds, while that of the unified algorithm is 30 seconds. In
conclusion, the real-time performance and the landing accuracy of the proposed MILM are further verified.

VI. Conclusion
This paper develops a mixed-input learning-based method for solving the multi-point landing guidance (MLG)

problem in real-time. First, the MLG problem is formulated as an optimal control problem with quadratic constraints
via introducing binary decision variables. Then, supported by the necessary conditions for optimality of MLG, the
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Fig. 4 The graph plot of specified architecture of the constructed hybrid neural network for 𝑡 𝑓

optimal guidance law of the MLG is represented by a few critical parameters. After that, a mixed-input deep neural
network is constructed and trained to map the implicit relationship between the problem inputs and the identified critical
parameters. Moreover, the mixed-input learning-based method can solve the MLG problem in less than 0.2 seconds,
which verifies its potential for on-board application.
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