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This paper proposes a multi-stage optimization framework based on iterative second-order
cone programming (SOCP) to solve the three-dimensional (3D) multi-point landing guidance
(MLG) problem with hazard avoidance. The approach is used to generate the offline optimal
trajectories for database construction in Part II of this paper, it aims to select a safe landing point
while finding an optimal path to the selected landing point with minimum fuel consumption.
First, by introducing binary variables associated with quadratic constraints, the MLG problem
with hazard avoidance is equivalently reformulated as a quadratically constrained quadratic
programming (QCQP) problem. Next, to solve the reformulated QCQP problem, a multi-stage
optimization framework, which is combined with the relaxation technique, is introduced. The
proposed method includes two main stages. In the first stage, the reformulated problem is
relaxed into a nonconvex QCQP problem via ignoring constraints related to the binary variables,
which can be solved by the proposed iterative second-order cone programming (SOCP) with
random initial guess. Via solving the relaxed QCQP problem with proposed iterative SOCP,
the initial guess for the second phase is generated. In the second phase, with the generated
initial guess in the first phase, the proposed iterative SOCP can find the local minimum for the
equivalently reformulated QCQP problem. Finally, the effectiveness of the proposed method is
verified via numerical simulations.

I. Introduction
With the development of terrestrial techniques for terrain relative navigation (TRN), the multi-point landing guidance

(MLG) is getting increasing attention. Although, the TRN technology is still under development, extensive studies have
been conducted on the map-based navigation to achieve precision landing with hazard avoidance [1]. However, the
next-generation landing missions require an onboard evaluation of tens-to-hundreds of pre-specified landing sites, as
well as the generation of an optimal trajectory at the same time, which makes MLG a challenging task [2].

In the traditional powered descent guidance problem, the target landing site is considered to be a fixed point, and the
objective is to design a fuel-optimal trajectory that takes into account the vehicle’s dynamics and mission constraints.
Extensive approaches have been developed for the optimal powered descent guidance problem, which can be classified
as direct and indirect methods. In the direct methods, the continuous states and controls are discretized, and then
the continuous optimal control problems can be formulated as Nonlinear Programming (NLP) problems, which can
be solved via different optimization algorithms. However, despite the fact that direct approaches have been used to
solve a wide range of optimal control problems, it usually requires a good initial guess [3]. In addition, relaxation and
convexification techniques have been adopted in the direct methods [4–6]. However, the traditional algorithms for
solving NLP cannot handle binary variables.

On the other hand, indirect approaches convert an optimal control problem into a two-point boundary-value problem
(TPBVP) based on Hamiltonian and first-order necessary conditions. To solve the resulted TPBVPs, shooting [7, 8] and
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approximation [9, 10] methods have been developed. Whereas in general, the resulting TPBVPs in an indirect method
tend to be highly sensitive to the adjoint variables, which cannot guarantee convergence in general cases.

Instead of targeting a fixed landing point, the MLG problem requires to select a landing point from a set of feasible
options within a specified landing region. Several approaches have been developed for landing point selection. For
example, work in [2] selects the optimal landing site from hundreds of candidates by simply comparing the propellant
mass for each target. A synthetic landing area assessment criterion is proposed in [11], and the best landing site is
selected by evaluating terrain safety, fuel consumption, and touchdown performance during the descent phase. However,
it is time consuming to evaluate all options when a great number of landing points are available. This paper proposes
a multi-stage optimization framework to select a landing point while finding an optimal path leading to the selected
landing point with minimum fuel consumption. In addition, from the existing analysis, the optimal control profile for
the fuel-optimal powered descent guidance is proved to have a bang-bang curve [12]. Therefore, the optimal control
profile is constrained to yield a bang-bang profile.

By expressing the binary constraints as quadratic equality constraints and employing the discretization techniques,
the MLG problem can be formulated as a nonconvex quadratically constrained quadratic programming (QCQP) problem.
Our previous work in [13] has developed a unified algorithm based on iterative second-order cone programming (SOCP)
to solve bang-bang optimal control problems. In this paper, we extend the multi-stage optimization framework to
the MLG problem. To obtain robust convergence of the iterative SOCP algorithm under random initial guess, the
multi-stage optimization framework is combined with the relaxation technique to achieve robust convergece. To be
specific, in the first stage, all the binary constraints are relaxed as upper and lower bounds, and the reformulated problem
in the first stage is solved via the iterative SOCP algorithm. The solution from the first stage is used as an initial guess
for the second stage, where the binary constraints of the original problem are reconsidered to obtain the final solution.
Simulation results are provided to verify the effectiveness of the proposed method. The approach is used to generate the
offline optimal trajectories for database construction in Part II of this paper [14].

This paper is organized as follows. Section II introduces the problem formulation. The proposed multi-stage
optimization framework is detailed in Section III. After that, numerical simulations are provided and analyzed in Section
IV. Conclusions are addressed in Section V.

II. Problem Formulation
For the 3D MLG problem with hazard avoidance, the landing vehicle is required to select a landing point from a

target region containing hazards and then guide the vehicle to the selected landing point with high precision. Motion
during the MLG is analyzed in a Cartesian coordinate system with the origin fixed to the surface of Mars. Without loss
of generality, we assume the landing vehicle can be treated as a point mass and the origin of the Cartesian coordinate is
located at the center of the target region. The 3D motion equations of the landing vehicle are expressed as

¤r = v, (1a)

¤v = g + T
𝑚
, (1b)

¤𝑚 = −𝜂 ∥T∥2 , (1c)

where r = [𝑥, 𝑦, 𝑧]𝑇 represents the position vector, v = [𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧]𝑇 is the velocity vector, g = [0, 0,−𝑔0]𝑇 is the
gravitational acceleration vector (𝑔0 = 3.711 𝑚/𝑠2 is the gravity acceleration on Mars), T = [𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧]𝑇 denotes the
vector of the engine thrust, 𝑚 is the launch vehicle mass, and 𝜂 is a positive constant associated with the fuel consumption
rate of the rockets. 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 represents the lower bound and upper bound of the thrust magnitude T. Thus,

𝑇𝑚𝑖𝑛 ≤ ∥T∥2 ≤ 𝑇𝑚𝑎𝑥 , ∀ 𝑡 ∈ [𝑡0, 𝑡 𝑓 ], (2)

where 𝑡0 and 𝑡 𝑓 are the starting and final time of the powered descent landing, respectively. According to the Pontryagin’s
maximum principle, the fuel-optimal thrust magnitude ∥T∥ is supposed to be at either the upper bound 𝑇𝑚𝑎𝑥 or the lower
bound 𝑇𝑚𝑖𝑛, which is a bang-bang profile [12]. Thus, the upper and lower bound constraints on the thrust magnitude in
(2) can be written as

∥T∥2 ∈ {𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥} , ∀ 𝑡 ∈ [𝑡0, 𝑡 𝑓 ] . (3)

2

D
ow

nl
oa

de
d 

by
 P

ur
du

e 
U

ni
ve

rs
ity

 o
n 

Ju
ne

 2
6,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

14
45

 



To avoid the vehicle hitting the ground before landing, another state constraint, the glide slope constraint is considered,
which can be written as

r ∈ C :=
{
r ∈ R3 :

r · e
∥r∥ ∥e∥ ≥ cos 𝜃

}
, (4)

where e is a unit vector pointing to the direction of the z-axis and 𝜃 is the maximum value of the glide slope angle.
Meanwhile, due to the limitation on the fuel mass, the vehicle mass is constrained by

𝑚(𝑡 𝑓 ) ≥ 𝑚𝑑𝑟𝑦 , (5)

where 𝑚𝑑𝑟𝑦 denotes the empty mass of the vehicle. In the MLG problem, the boundary constraints on the initial and
terminal states are specified as

𝑚(𝑡0) = 𝑚0, r(𝑡0) = r0, v(𝑡0) = v0, v(𝑡 𝑓 ) = 0 (6)

Besides, to guarantee that the selected landing point locates in the target region, we assume that there are 𝑛 potential
landing points in the target region, and for the 𝑖th potential landing point, its position vector is expressed as r 𝑓 𝑖 . Then,
via introducing 𝑛 binary variables 𝑐𝑖 , the constraints on the terminal states can be expressed as

𝑛∑︁
𝑖=1

𝑐𝑖 = 1, (7a)

𝑛∑︁
𝑖=1

𝑐𝑖 (r 𝑓 − r 𝑓 𝑖) = 0, (7b)

𝑐𝑖 (𝑐𝑖 − 1) = 0, 𝑖 = 1, . . . , 𝑛 (7c)

The objective of the MLG problem is to find the optimal landing point among a series of candidate points, and at the
same time, design the fuel-optimal trajectory. Thus, the MLG problem can be summarized as

min
T,𝑡 𝑓

− 𝑚(𝑡 𝑓 ) +
𝑛∑︁
𝑖=1

𝑐𝑖𝐽 (r 𝑓 𝑖), (8a)

subject to ¤r = v, (8b)

¤v = g + T
𝑚
, (8c)

¤𝑚 = −𝜂 ∥T∥2 , (8d)
∥T∥2 ∈ {𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥} , ∀𝑡 ∈ [𝑡0, 𝑡 𝑓 ], (8e)

r ∈ C :=
{
r ∈ R2 :

r · e
∥r∥ ∥e∥ ≥ cos 𝜃

}
, (8f)

𝑚(𝑡 𝑓 ) ≥ 𝑚𝑑𝑟𝑦 , (8g)
𝑚(𝑡0) = 𝑚0, r(𝑡0) = r0, v(𝑡0) = v0, v(𝑡 𝑓 ) = 0, (8h)
𝑛∑︁
𝑖=1

𝑐𝑖 (r 𝑓 − r 𝑓 𝑖) = 0,
𝑛∑︁
𝑖=1

𝑐𝑖 = 1, 𝑐𝑖 (𝑐𝑖 − 1) = 0, 𝑖 = 1, . . . , 𝑛, (8i)

where 𝐽 (r 𝑓 𝑖) is the estimated extra cost for the 𝑖th pre-specified landing site. Specifically, significantly high extra costs
are assigned for the potential landing sites in the hazard zones in order to guarantee a safe landing.

And then the above mentioned MLG problem (8) can be rewritten as a QCQP problem via applying the discretization
technique. For the sake of clarity, the continuous trajectory is discretized into N nodes, represented by [𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘], 𝑘 =
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1, · · · , 𝑁 at each node. Then the MLG in (8) can be transformed into a QCQP problem, expressed as

min
[𝑇1 ,...,𝑇𝑁 ],𝑡 𝑓

− 𝑚𝑁 +
𝑛∑︁
𝑖=1

𝑐𝑖𝐽 (r 𝑓 𝑖) (9a)

subject to
𝑥𝑘+1 − 𝑥𝑘

Δ𝑡
= 𝑣𝑥𝑘 ,

𝑦𝑘+1 − 𝑦𝑘
Δ𝑡

= 𝑣𝑦𝑘 ,
𝑧𝑘+1 − 𝑧𝑘

Δ𝑡
= 𝑣𝑧𝑘 , (9b)

𝑣𝑥,𝑘+1 − 𝑣𝑥,𝑘
Δ𝑡

=
𝑇𝑥𝑘

𝑚𝑘

,
𝑣𝑦,𝑘+1 − 𝑣𝑦,𝑘

Δ𝑡
=
𝑇𝑦𝑘

𝑚𝑘

,
𝑣𝑧,𝑘+1 − 𝑣𝑧,𝑘

Δ𝑡
=
𝑇𝑧𝑘

𝑚𝑘

− 𝑔0, (9c)

𝑚𝑘+1 − 𝑚𝑘

Δ𝑡
= −𝜂𝑇𝑘 , 𝑇2

𝑘 = 𝑇2
𝑥𝑘

+ 𝑇2
𝑦𝑘

+ 𝑇2
𝑧𝑘
, (9d)

(𝑧𝑘 − 𝑧 𝑓 )2 ≥ (𝑥𝑘 − 𝑥 𝑓 )2 · cot2 (𝜃) + (𝑦𝑘 − 𝑦 𝑓 )2 · cot2 (𝜃), (9e)
𝑚𝑁 ≥ 𝑚𝑑𝑟𝑦 , (9f)
𝑚1 = 𝑚0, r1 = r0, v1 = v0, v𝑁 = 0, (9g)
𝑛∑︁
𝑖=1

𝑐𝑖 (r𝑁 − r 𝑓 𝑖) = 0,
𝑛∑︁
𝑖=1

𝑐𝑖 = 1, (9h)

𝑐𝑖 (𝑐𝑖 − 1) = 0, (9i)
(𝑇𝑘 − 𝑇𝑚𝑖𝑛) (𝑇𝑘 − 𝑇𝑚𝑎𝑥) = 0. (9j)

where 𝑖 = 1, · · · , 𝑛, 𝑘 = 1, · · · , 𝑁 , and Δ𝑡 represents the uniform time step. Next, the multi-stage optimization framework
is described, which is applied to solve the formulated QCQP problem.

III. Multi-Stage Optimization Framework with Iterative SOCP

A. Multi-stage Iterative Algorithm
For the MLG problem, to obtain robust convergence of the proposed algorithm under random initial guess, a

multi-stage optimization framework is proposed, which includes two stages. In the first stage, only the fuel consumption
is considered in the objective function. In addition, the quadratic equality constraints on the bang-bang control profile
and the multiple landing points are relaxed as upper and lower bound inequality constraints in the first stage. Accordingly,
problem in (9) is cast as

min
[𝑇1 ,...,𝑇𝑁 ],𝑡 𝑓

− 𝑚𝑁 (10a)

subject to
𝑥𝑘+1 − 𝑥𝑘

Δ𝑡
= 𝑣𝑥𝑘 ,

𝑦𝑘+1 − 𝑦𝑘
Δ𝑡

= 𝑣𝑦𝑘 ,
𝑧𝑘+1 − 𝑧𝑘

Δ𝑡
= 𝑣𝑧𝑘 , (10b)

𝑣𝑥,𝑘+1 − 𝑣𝑥,𝑘
Δ𝑡

=
𝑇𝑥𝑘

𝑚𝑘

,
𝑣𝑦,𝑘+1 − 𝑣𝑦,𝑘

Δ𝑡
=
𝑇𝑦𝑘

𝑚𝑘

,
𝑣𝑧,𝑘+1 − 𝑣𝑧,𝑘

Δ𝑡
=
𝑇𝑧𝑘

𝑚𝑘

− 𝑔0, (10c)

𝑚𝑘+1 − 𝑚𝑘

Δ𝑡
= −𝜂𝑇𝑘 , 𝑇2

𝑘 = 𝑇2
𝑥𝑘

+ 𝑇2
𝑦𝑘

+ 𝑇2
𝑧𝑘
, (10d)

(𝑧𝑘 − 𝑧 𝑓 )2 ≥ (𝑥𝑘 − 𝑥 𝑓 )2 · cot2 (𝜃) + (𝑦𝑘 − 𝑦 𝑓 )2 · cot2 (𝜃), (10e)
𝑚𝑁 ≥ 𝑚𝑑𝑟𝑦 , (10f)
𝑚1 = 𝑚0, r1 = r0, v1 = v0, v𝑁 = 0, (10g)
𝑛∑︁
𝑖=1

𝑐𝑖 (r𝑁 − r 𝑓 𝑖) = 0,
𝑛∑︁
𝑖=1

𝑐𝑖 = 1, (10h)

0 ≤ 𝑐𝑖 ≤ 1, 𝑖 = 1, ..., 𝑛, (10i)
𝑇𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑚𝑎𝑥 (10j)

The relaxed problem in the first stage is then solved by the iterative SOCP algorithm [13], and more details will be
introduced in the next subsection.

In the first stage, due to the relaxed binary constraints, the terminal point is not necessarily to be exact one of the
candidate landing sites. Based on the solution of the first stage, to generate a more reasonable initial guess for the
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second stage, the landing point that is closest to the terminal point in the first stage that is also outside of the avoidance
zones, is selected, and the values of 𝑐𝑖 , 𝑖 = 1, · · · , 𝑛 are assigned accordingly. The solution from the first stage, as well
as the allocated 𝑐𝑖 , 𝑖 = 1, · · · , 𝑛, are combined as the initial guess of the second stage.

For the second stage, both the fuel consumption and the extra costs for the potential landing sites are considered in
the objective function. Moreover, the binary constraints on the bang-bang profile and the multiple landing points are
reconsidered. To improve the precision of the discretized trajectory, the time intervals are considered as additional
variables. And then the problem can be formulated as

min
[𝑇1 ,...,𝑇𝑁 ], [Δ𝑡1 ,...,Δ𝑡𝑁 ]

− 𝑚𝑁 +
𝑛∑︁
𝑖=1

𝑐𝑖𝐽 (r 𝑓 𝑖) (11a)

subject to
𝑥𝑘+1 − 𝑥𝑘

Δ𝑡𝑘
= 𝑣𝑥𝑘 ,

𝑦𝑘+1 − 𝑦𝑘
Δ𝑡𝑘

= 𝑣𝑦𝑘 ,
𝑧𝑘+1 − 𝑧𝑘

Δ𝑡𝑘
= 𝑣𝑧𝑘 , (11b)

𝑣𝑥,𝑘+1 − 𝑣𝑥,𝑘
Δ𝑡𝑘

=
𝑇𝑥𝑘

𝑚𝑘

,
𝑣𝑦,𝑘+1 − 𝑣𝑦,𝑘

Δ𝑡𝑘
=
𝑇𝑦𝑘

𝑚𝑘

,
𝑣𝑧,𝑘+1 − 𝑣𝑧,𝑘

Δ𝑡𝑘
=
𝑇𝑧𝑘

𝑚𝑘

− 𝑔0, (11c)

𝑚𝑘+1 − 𝑚𝑘

Δ𝑡𝑘
= −𝜂𝑇𝑘 , 𝑇2

𝑘 = 𝑇2
𝑥𝑘

+ 𝑇2
𝑦𝑘

+ 𝑇2
𝑧𝑘
, (11d)

(𝑧𝑘 − 𝑧 𝑓 )2 ≥ (𝑥𝑘 − 𝑥 𝑓 )2 · cot2 (𝜃) + (𝑦𝑘 − 𝑦 𝑓 )2 · cot2 (𝜃), (11e)
𝑚𝑁 ≥ 𝑚𝑑𝑟𝑦 , (11f)
𝑚1 = 𝑚0, r1 = r0, v1 = v0, v𝑁 = 0, (11g)
𝑛∑︁
𝑖=1

𝑐𝑖 (r𝑁 − r 𝑓 𝑖) = 0,
𝑛∑︁
𝑖=1

𝑐𝑖 = 1, (11h)

𝑐𝑖 (𝑐𝑖 − 1) = 0, (11i)
(𝑇𝑘 − 𝑇𝑚𝑖𝑛) (𝑇𝑘 − 𝑇𝑚𝑎𝑥) = 0. (11j)

Using the iterative SOCP algorithm again, the formulated problem in the second stage, which includes all constraints of
the original problem, is resolved. The framework of the proposed multi-stage optimization framework is presented in
Table 1.

Table 1 Flowchart of the Multi-stage Optimization Framework

STAGE 1
Input: Random initial guess x̄0

Output: Thrusts [T1, . . . ,T𝑁 ], final time 𝑡 𝑓
Begin: Reformulate the original QCQP problem (9) into relaxed problem (10)
and apply the iterative SOCP algorithm to solve it, until the converged solution is obtained.
STAGE 2
Input: The formulated problem (11)
solution from STAGE 1 and 𝑐𝑖 allocation according to the closest safe landing site as the initial guess,
Output: Thrusts [T1, . . . ,T𝑁 ], time intervals [Δ𝑡1, . . . ,Δ𝑡𝑁 ]
Begin: Apply the iterative SOCP algorithm to solve (9) with binary constraints,
until the converged solution is obtained.

B. The Iterative SOCP Algorithm
In this subsection, the iterative SOCP algorithm proposed in our previous work [13], is introduced and applied to the

multi-point FOPDG problem.
In the above problem (10) and (11), by introducing extra variables and quadratic equality constraints, the objective

function and constraints can be converted into a quadratic form[15]. Furthermore, when an equality constraint is taken
into consideration, it can be equivalently replaced by two inequality constraints. Then the discretized problem in (9) and
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(10) can be formulated as an inhomogeneous QCQP problem,

min
ȳ

1
2

y𝑇P0y + q𝑇
0 y, (12)

s.t.
1
2

y𝑇P 𝑗y + q𝑇
𝑗 y + 𝑠 𝑗 ≤ 0, 𝑗 = 1, ..., 𝐻,

where y ∈ R𝑚 denotes the unknown vector to be optimized, 𝑃 𝑗 ∈ R𝑚×𝑚 are symmetric matrices, q 𝑗 ∈ R𝑚 are known
vectors and 𝑠 𝑗 ∈ R represent the given constants, 𝐻 is the number of the inequality constraints.

The inhomogeneous QCQP problem presented in (10) and (11) are then recast as a homogeneous rank-one constrained
problem. Following that, By introducing a new variable x = [y𝑇 , 1]𝑇 , the inhomogeneous QCQP problem (12) can be
equivalently transformed as a homogeneous QCQP

min
x∈R𝑚+1

x𝑇A0x, (13)

s.t. xTA 𝑗x + 𝑠 𝑗 ≤ 0, 𝑗 = 1, ..., 𝐻,

where A 𝑗 =

[
P 𝑗 q 𝑗/2

q𝑇
𝑗
/2 0

]
∈ R(𝑚+1)×(𝑚+1) . According to the equation x𝑇Ax = Tr(Axx𝑇 ), where Tr(·) represents the

trace of a matrix, by denoting X = xx𝑇 ∈ R(𝑚+1)×(𝑚+1) , problem (13) can be expressed as

min
X,x

Tr(A0X), (14)

s.t. Tr(A 𝑗X) + 𝑠 𝑗 ≤ 0, 𝑗 = 1, ..., 𝐻,
X = xx𝑇 ,

where the enty 𝑋 (𝑖, 𝑗) = 𝑥(𝑖)𝑥( 𝑗) in matrix X. Subsequently, the constraint X = xx𝑇 can be equivalently converted to a
rank-one constraint, rank(X) ≤ 1, together with a semidefinite constraint X ⪰ 0. Therefore, problem (14) can be further
transformed into a rank-one constrained SDP problem as

min
X

Tr(A0X), (15)

s.t. Tr(A 𝑗X) + 𝑠 𝑗 ≤ 0, 𝑗 = 1, ..., 𝐻,
rank(X) ≤ 1,
X ⪰ 0.

Hence, without loss of generality, a general QCQP problem is equivalently reformulated as a rank-one constrained
SDP problem. And yet, the rank-one constraint in the problem (15) is still nonconvex. Therefore, solving large-scale
rank-constrained SDP problems is always time-consuming.

For the purpose of enhancing the computational efficiency, in the second part, the semidefinite constraint is
decomposed into a collection of second-order cone constraints. Here, a 2 × 2 sub-matrix of X is represented as

X𝛽 =

[
𝑋 (𝑝, 𝑝) 𝑋 (𝑝, 𝑞)
𝑋 (𝑞, 𝑝) 𝑋 (𝑞, 𝑞)

]
,

where 𝛽 denotes an integer pair (𝑝, 𝑞). Moreover, two sets of integer pairs are introduced, represented as F and G,
respectively,

F := {(𝑝, 𝑞) |𝑞 ≠ 𝑚 + 1},

G := {(𝑝, 𝑞) |𝑞 = 𝑚 + 1}.

In problem (15), equations x = [y𝑇 , 1]𝑇 and X = xx𝑇 imply that 𝑋 (𝑚 + 1, 𝑚 + 1) = 1. As a result, for a 2× 2 sub-matrix
X𝛾 , where 𝛾 ∈ G, we have

X𝛾 =

[
𝑋 (𝑝, 𝑝) 𝑋 (𝑝, 𝑚 + 1)

𝑋 (𝑚 + 1, 𝑝) 1

]
.
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Theorem III.1 [16] All of the 2 × 2 primal minors of a rank-one symmetric positive semidefinite matrix are equal to
zero, indicating that all of its 2 × 2 sub-matrices are rank-one positive semidefinite matrices.

According to Theorem III.1, for problem (15), the semidefinite constraint X𝛾 ⪰ 0 can be recast as

𝑋 (𝑝, 𝑝) − 𝑋 (𝑝, 𝑚 + 1)2 ≥ 0,
𝑋 (𝑝, 𝑝) ≥ 0,

which are second-order-cone and linear constraints. If non-zero elements only exist at the last row, last column and
principal diagonal of the coefficient matrices, it is evident that only the semidefinite constraints on the sub-matrix X𝛾 ,
where 𝛾 ∈ G need to be considered. And then 𝑋 (𝑝, 𝑞) can be represented with a quadratic function as

𝑋 (𝑝, 𝑞) = 𝑥(𝑝)𝑥(𝑞) = 1
2
[(𝑥(𝑝) + 𝑥(𝑞))2 − 𝑥(𝑝)2 − 𝑥(𝑞)2] . (16)

By introducing a new vector z = [𝑧1, · · · , 𝑧ℎ]𝑇 , where 𝑧𝑖ℎ = 𝑥(𝑝) + 𝑥(𝑞), 𝑖ℎ = 1, . . . , ℎ, the pair (𝑝, 𝑞) ∈ F , and ℎ is
the number of cross terms involved in the set F , then (16) can be written as

2𝑋 (𝑝, 𝑞) = (𝑧𝑖ℎ )2 − 𝑋 (𝑝, 𝑝) − 𝑋 (𝑞, 𝑞). (17)

Denote x̂ = [x𝑇 , z𝑇 , 1]𝑇 ∈ R(𝑚+ℎ+2) and X̂ = x̂x̂𝑇 , then 2𝑋̂ (𝑝, 𝑞) = 𝑋̂ (𝑛+𝑖ℎ, 𝑛+𝑖ℎ)−𝑋̂ (𝑝, 𝑝)−𝑋̂ (𝑞, 𝑞), 𝑖ℎ = 1, . . . , ℎ.As
the original vector x has now been extended to x̂, the coefficient matrices A 𝑗 can be reformulated as Â 𝑗 ∈ S(𝑚+ℎ+2)×(𝑚+ℎ+2)

such that Tr(A 𝑗X) = Tr(Â 𝑗X̂), 𝑗 = 1, . . . , 𝐻. Besides, given that only non-zero elements in Â 𝑗 , 𝑗 = 0, . . . , 𝐻, will be
involved in the second-order cone constraints, we introduce the following definition.

Definition III.2 Let Â𝑡 =
∑𝑚

𝑗=0 abs(Â 𝑗 ), where abs(Â 𝑗 ) denotes the element-wise absolute value of the matrix Â 𝑗 ,
then we can define a set Ĥ as

Ĥ := {(𝑝, 𝑞) |𝑝, 𝑞 ∈ {1, ..., 𝑚 + ℎ + 2} & 1 ≤ 𝑝 < 𝑞 ≤ 𝑚 + ℎ + 2}.

Denote the 𝑘th entry in 𝐻̂ as 𝛽𝑘 , where 1 ≤ 𝑘 ≤ 𝐾, 𝐾 =
(𝑚+ℎ+1) (𝑚+ℎ+2)

2 . Then set K̂ is defined as

K̂ := {𝛽𝑘 | 𝐴̂𝑡 (𝑝, 𝑞) ≠ 0 & 𝛽𝑘 ∈ Ĥ},

where 𝑄̂𝑡 (𝑝, 𝑞) is the entry in 𝑝th row and 𝑞th column of matrix Â𝑡 . Similarly, we have

F̂ := {𝛽 𝑓 |𝑞 ≠ 𝑚 + ℎ + 2 & 𝛽 𝑓 ∈ K̂} = ∅,

Ĝ := {𝛽𝑔 |𝑞 = 𝑚 + ℎ + 2 & 𝛽𝑔 ∈ K̂}.

And then, the rank-constrained SDP problem in (15) can be reformulated as a a rank-one constrained SOCP problem
using the aforementioned definition.

min
X̂

Tr(Â0X̂), (18)

s.t. Tr(Â 𝑗X̂) + 𝑠 𝑗 ≤ 0, 𝑗 = 1, ..., 𝐻,

X̂𝛽𝑔
=

[
𝑋̂ (𝑝, 𝑝) 𝑋̂ (𝑝, 𝑞)
𝑋̂ (𝑞, 𝑝) 𝑋̂ (𝑞, 𝑞)

]
, ∀𝛽𝑔 ∈ Ĝ,

𝑋̂ (𝑚 + 𝑖ℎ, 1) = 𝑋̂ (𝑝, 1) + 𝑋̂ (𝑞, 1), ∀𝛽 𝑓 ∈ F̂ , 𝑖ℎ = 1, . . . , ℎ,
𝑋̂ (𝑝, 𝑝) ≥ 0, ∀𝛽𝑔 ∈ Ĝ,

𝑋̂ (𝑝, 𝑝) − 𝑋̂ (𝑝, 𝑚 + 𝑛 + 2)2 ≥ 0, ∀𝛽𝑔 ∈ Ĝ,
rank(X̂) ≤ 1.
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Then, the rank contraint can be transformed into multiple rank-one constraints on the 2 × 2 principle submatrices
of X̂ by applying decomposition techniques based on Theorem III.1. Therefore, problem (18) can be equivalently
transformed into a new rank-one constrained SDP problem, represented by

min
X̂

Tr(Â0X̂), (19)

s.t. Tr(Â 𝑗X̂) + 𝑐 𝑗 ≤ 0, 𝑗 = 1, ..., 𝐻,

X̂𝛽𝑔
=

[
𝑋̂ (𝑝, 𝑝) 𝑋̂ (𝑝, 𝑞)
𝑋̂ (𝑞, 𝑝) 𝑋̂ (𝑞, 𝑞)

]
, ∀𝛽𝑔 ∈ Ĝ,

𝑋̂ (𝑚 + 𝑖ℎ, 1) = 𝑋̂ (𝑝, 1) + 𝑋̂ (𝑞, 1), ∀𝛽 𝑓 ∈ F , 𝑖ℎ = 1, . . . , ℎ,
𝑋̂ (𝑝, 𝑝) ≥ 0, ∀𝛽𝑔 ∈ Ĝ,

𝑋̂ (𝑝, 𝑝) − 𝑋̂ (𝑝, 𝑚 + 𝑛 + 2)2 ≥ 0, ∀𝛽𝑔 ∈ Ĝ,
rank(X̂𝛽g

) ≤ 1.

For each 2 × 2 submatrix X̂𝛽𝑔
, we define 𝜆1 and 𝜆2 as its two eigenvalues, and assume that 𝜆1 ≤ 𝜆2. Correspondingly,

there are two eigenvectors v1
𝛽𝑔

and v2
𝛽𝑔

which have

𝜆1v1
𝛽𝑔

= X̂𝛽𝑔
v1
𝛽𝑔
, 𝜆2v2

𝛽𝑔
= X̂𝛽𝑔

v2
𝛽𝑔
. (20)

Due to the fact that X̂𝛽𝑔
is a rank-one positive semidefinite matrix, indicating that 𝜆2 ≥ 𝜆1 and 𝜆1 = 0, we have

(v1
𝛽𝑔
)𝑇 X̂𝛽𝑔

v1
𝛽𝑔

= (v1
𝛽𝑔
)𝑇 (𝜆1v1

𝛽𝑔
) = 0. (21)

By introducing another new variable 𝑟𝛽𝑔 ∈ R, the rank-one constraint rank(X̂𝛽𝑔
) = 1 can be reformulated as

𝑟𝛽𝑔 − (v1
𝛽𝑔
)𝑇 X̂𝛽𝑔

v1
𝛽𝑔

≥ 0, (22)

where 𝑟𝛽𝑔 = 0. However, the eigenvectors v1
𝛽𝑔

and v2
𝛽𝑔

can not be determined before obtaining the exact solution of X̂𝛽𝑔
.

For this reason, in the last step, the optimal eigenvectors are approached by gradually minimizing the independent
variable 𝑟𝛽𝑔 . Thus, in order to accomplish this, in the new problem, the penalty term related to the rank-one constraint is
minimized together with the original objective function. And the problem (19) can be reformulated as

min
X̂

Tr(Â0X̂) + 𝜔𝑙

∑︁
𝛽𝑔 ∈Ĝ

𝑟𝛽𝑔 (23)

s.t. Tr(Â 𝑗X̂) + 𝑐 𝑗 ≤ 0, 𝑗 = 1, ..., 𝐻,

X̂𝛽𝑔
=

[
𝑋̂ (𝑝, 𝑝) 𝑋̂ (𝑝, 𝑞)
𝑋̂ (𝑞, 𝑝) 𝑋̂ (𝑞, 𝑞)

]
, ∀𝛽𝑔 ∈ Ĝ,

𝑋̂ (𝑚 + 𝑖ℎ, 1) = 𝑋̂ (𝑝, 1) + 𝑋̂ (𝑞, 1), ∀𝛽 𝑓 ∈ F , 𝑖ℎ = 1, . . . , ℎ,
𝑋̂ (𝑝, 𝑝) ≥ 0, ∀𝛽𝑔 ∈ Ĝ,

𝑋̂ (𝑝, 𝑝) − 𝑋̂ (𝑝, 𝑛 + 1)2 ≥ 0, ∀𝛽𝑔 ∈ Ĝ,
𝑟𝛽𝑔 − (v1

𝛽𝑔
)𝑇 X̂𝛽𝑔

v1
𝛽𝑔

≥ 0, ∀ 𝛽𝑔 ∈ Ĝ,

where 𝜔𝑙 > 0 denotes the weighting factor for 𝛽𝑔 at the 𝑙th iteration. However, before finding X̂𝛽𝑔
for all 𝛽𝑔 ∈ Ĝ, its

corresponding eigenvectors v1
𝛽𝑔

can not be obtained. Therefore, an iterative framework based on SOCP is presented to
solve the QCQP problem. The steps of the iterative SOCP are listed in Table 2.
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Table 2 Flowchart of the Iterative SOCP Algorithm

Input: P 𝑗 , q 𝑗 , 𝑠 𝑗 , 𝑗 = 0, 1, ..., 𝐻, 𝜔𝑙 , 𝑙max, and 𝜖
Output: Unknown vector y
begin:
1) Compute Â 𝑗 , 𝑗 = 0, . . . 𝐻, according to the input
2) Calculate X̂ and v1

𝛽𝑔
with a random initial guess

3) for 𝑙 = 1, 2, ..., 𝑙max

4) Solve (23) to obtain solution X̂ and 𝑟𝛽𝑔 ,
5) If

∑
𝛽𝑔 ∈Ĝ 𝑟𝛽𝑔 ≤ 𝜖 ,

6) break;
7) else
8) Update v1

𝛽𝑔
from eigenvectors of X̂𝛽𝑔

9) end if
10) 𝑙 = 𝑙 + 1
11) end for

IV. Simulation Results
To verify the performance of the proposed multi-stage optimization framework, the numerical simulation results

of the MLG problem are provided. Here, to solve the SOCP problems in each iteration, a commercial solver
Mosek [17] is used. In the simulation case, 100 pre-specified landing sites are distributed evenly in the range of
𝑋 ∼ [−2𝑘𝑚, 2𝑘𝑚] and 𝑌 ∼ [−2𝑘𝑚, 2𝑘𝑚]. In addition, the parameters in (9) and (10) are set as 𝑔0 = −3.7114𝑚/𝑠2,
𝑚0 = 51.1 𝑡, 𝑚𝑑𝑟𝑦 = 0.8𝑚0 = 40.88 𝑡, 𝜂 = 4.53 × 10−4 𝑠/𝑚, 𝑇𝑚𝑎𝑥 = 640 𝑘𝑁 , 𝑇𝑚𝑖𝑛 = 240 𝑘𝑁 , 𝜃 = 86◦ and the initial
states of the powered descent phase are specified as 𝑥(𝑡0) = −1025.75 𝑚, 𝑦(𝑡0) = −512.88 𝑚, 𝑧(𝑡0) = 7403.86𝑚,
𝑣𝑥 (𝑡0) = 21.01𝑚/𝑠, 𝑣𝑥 (𝑡0) = 42.02𝑚/𝑠, 𝑣𝑧 (𝑡0) = −203.75𝑚/𝑠. In the simulation cases, we use the flatness of the
terrain as the criteria for assigning the extra costs for all the potential landing points.

(a) Optimized total mass (b) Optimized thrust magnitude

Fig. 1 Optimized mass and thrust components

As shown in Fig. 1a, the terminal mass of the landing vehicle is 42.97 tons, which indicates that the fuel consumption
is 8.13 tons, and it takes 71.0 second for the proposed method to converge. The topographic map and the optimal
trajectories from stage 1 and stage 2 are shown in the Fig. 3a and Fig. 3b, respectively. From the optimized trajectories
of the simulation case, it can be observed that in the first stage, the terminal point of the trajectory does not overlap
with any potential landing points. While in the second stage, due to the binary constraints on the terminal states, the
optimal trajectory ends at exactly one of the candidate landing sites. In Fig. 1b, the thrust magnitude provided by the
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(a) Optimized trajectory from the multi-stage iterative algo-
rithm

(b) Optimized velocities from the multi-stage iterative algo-
rithm

Fig. 2 Optimized trajectory and velocity

(a) Optimized trajectory from stage 1 (b) Optimized trajectory from stage 2

Fig. 3 Optimized trajectory from the multi-stage iterative algorithm

proposed algorithm is presented, where the green, black, blue and red curves represent the thrust magnitude, thrust
components along the 𝑥-axis, the 𝑦-axis and the 𝑧-axis, respectively. It shows that the thrust magnitude obtained is an
exact bang-bang curve. More details of the position history and the velocity history in the powered descent phase are
demonstrated in Fig. 2.

Besides, the optimized trajectories of another case are provided in Figs. 4a and 4b. From this case, it can be
observed that in the first stage, since only the fuel consumption is considered in the objective function, the landing
vehicle finally landed in an area with uneven terrain. Whereas, in the second stage, due to the consideration of the extra
costs from the selected landing points in the first phase, the trajectory switched to a flat landing site.

In summary, from the simulation results, it can be concluded that the proposed multi-stage optimization framework
can effectively solve the MLG problem with binary decision variables. Extensive simulation cases have been generated
for constructing a database for Part II of this topic [14].

V. Conclusion
In this paper, a multi-stage optimization framework is developed to solve the three dimensional multi-point landing

guidance (MLG) problem. Simulation results show that for the MLG problem, the proposed method can find a bang-bang
optimal control solution while avoiding hazard zones. The proposed methods have been used for offline database
generation in Part II of this topic.
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(a) Optimized trajectory from stage 1 (b) Optimized trajectory from stage 2

Fig. 4 Optimized trajectory from the multi-stage iterative algorithm
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