
Review Article

Design of a fault detection and diagnose
system for intelligent unmanned aerial
vehicle navigation system
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Abstract

A secure control system is of great importance for unmanned aerial vehicles, especially in the condition of fault data

injection. As the source of the feedback control system, the Inertial navigation system/Global position system (INS/GPS)

is the premise of flight control system security. However, unmanned aerial vehicles have the requirement of lightweight

and low cost for airborne equipment, which makes redundant device object unrealistic. Therefore, the method of fault

detection and diagnosis is desperately needed. In this paper, a fault detection and diagnosis method based on fuzzy

system and neural network is proposed. Fuzzy system does not depend on the mathematical model of the process, which

overcomes the difficulties in obtaining the accurate model of unmanned aerial vehicles. Neural network has a strong self-

learning ability, which could be used to optimize the membership function of fuzzy system. This paper is structured as

follows: first, a Kalman filter observer is introduced to calculate the residual sequences caused by different sensor faults.

Then, the sequences are transmitted to the fault detection and diagnosis system and fault type can be obtained. The

proposed fault detection and diagnosis algorithm was implemented and evaluated with real datasets, and the results

demonstrate that the proposed method can detect the sensor faults successfully with high levels of accuracy and

efficiency.
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Introduction

The unmanned aerial vehicles (UAVs) have been
increasingly used in civil and military applications
in which ground vehicles cannot gain access to
the desired location. The applications include the
search and rescue operations, area mapping, weather
monitoring, agricultural operations, etc.1–4 Fault
occurrence in UAVs can cause fatal human safety
and financial loss, therefore, a secure control system
should be designed to be as safe and robust as possible
in order to face different types of emergencies.5,6 So it is
necessary to design a fault detection and diagnosis
(FDD) strategy in control system. In airborne equip-
ment of UAVs, size, weight, and cost are the three
critical factors, which indicate that hardware redun-
dancy is not feasible. Therefore, the method of analyt-
ical redundancy has been proposed as an alternative
solution. Since the analytical redundancy approach is
based on mathematical model of the system, they are
called model-based techniques for FDD.

The microelectromechanical systems (MEMSs) are
universally used in the navigation system of UAVs,7,8

which have the characteristics of light weight, small
mass, less expensive, and lower power consumption.9

In order to improve the performance of MEMS naviga-
tion system, the combination of INS/GPS is used to
provide an ideal navigation system with full capability
of continuously outputting position, velocity, and atti-
tude of UAVs.10,11 The reliability of INS/GPS system is
prominently important because any fault of navigation
system can lead to the feedback loop error of control
system. In this paper, a sensor FDD system for inte-
grated navigation system used in UAVs is presented.

Several methods have been used for FDD. An
observer/Kalman filter identification has been used
to detect sensor faults applied to a helicopter math-
ematical method12; experiments with an autonomous
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helicopter had been conducted to collect input–output
data in many different flight conditions and the fault
diagnosis effects are significantly. In Gu et al.,13 a
bank of Kalman filters and Mahalanobis distance
are used to estimate the UAV attitude. However,
these methods all need to establish multiple Kalman
filters for different fault conditions, which lead to a
dramatic computational cost. Some nonlinear algo-
rithms have been developed for fault detection.14–16

A detection strategy based on neural network (NN)
is used to detect faults in sensors and actuators of
UAV systems.5 The algorithm was implemented and
evaluated on an aircraft model and the results show
that the method can detect the sensor and actuator
faults successfully.

In general, unmodeled dynamics, disturbances, and
not linear parameterizable uncertainties often make the
control approach much too complicated, which leads
to inaccurate observation residuals obtained by fault
detection system and unreliable diagnosis results.
Fuzzy system is a kind of control algorithm imitating
human mind, and it does not depend on the mathem-
atical model of the process.17,18 However, the fuzzy
rules are approximately ratiocinated by prior know-
ledge and it lacks the ability of self-study or online
adjusting, therefore, the results of algorithm relay on
the human experience. NN has a strong self-learning
ability, which can get the black-box learning mode
from a lot of input and output data.19,20 In this
paper, first, a Kalman filter observer is introduced to
calculate the residual sequences which are caused by
different sensor faults. Then, an improved method
based on fuzzy system in which membership functions
are updated by NN is proposed to implement fault
diagnosis. In this way, the complex relationship
between sensor faults and observation residuals can
be described by a set of learning coefficients and mem-
bership functions. The FDD algorithm was imple-
mented and evaluated with real datasets from
experimental UAVs; the results show that the proposed
method can detect the sensor faults successfully with
high levels of accuracy and efficiency.

The article is organized as follows: In the next section,
the theoretical basis of Kalman filter observer is pre-
sented and part of the implementation results of residual
estimation are discussed. In ‘‘FDD algorithm based on
fuzzy system and NN’’ section, the faults detection
method based on fuzzy system and NN is introduced
and the training process is derived step by step. The
numerical experiments based on real datasets are pro-
cessed in ‘‘FDD system testing and experimental results’’
section, followed by conclusion in the final section.

Kalman filter identification method

The Kalman filter is known as a linear quadratic esti-
mation method, which is an algorithm that uses a
series of measurements to produce estimates of
unknown variables that tend to be more accurate

than those based on a single measurement alone.21,22

The filter is named after Rudolph E. Kalman, one of
the primary developers of this theory. The discrete
linear system model with faults can be presented by
the following equations

Xk ¼ �k,k�1Xk�1 þ �k�1Wk�1

Zk ¼ HkXk þ Vk þ fk,’�

�
ð1Þ

where Zk 2 Rm is the measure of the output, Xk 2 Rn

represents the system state, �k,k�1 2 Rn�n is one step
transfer matrix of system state, and �k�1 2 Rn�r is the
noise matrix. Wk 2 Rr and Vk 2 Rm are independent
Gaussian white noise sequence

E Wkf g ¼ 0, E WkW
T
j

n o
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E Vkf g ¼ 0, E VkV
T
j
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where �kj is Krone Nick function, � is a random vector
which presents the size of the fault. fk,’ is a piecewise
function which can be described as

fk,’ ¼
1, k5’

0, k5 ’

�
ð4Þ

The goal of the Kalman filter is to find an a-poster-
iori state estimate as the sum of an a-priori estimate
and a weighted difference of the time and measure-
ment updates.23 In the process of INS/GPS integrated
navigation system with Kalman filter, a priori estima-
tion is effected by sensors of gyroscope and acceler-
ometer and the measurement estimation is effected by
sensor of GPS. Therefore, the residual estimation
method based on two groups of Kalman filter func-
tions can be summarized as follows

X̂k ¼ I� KkHk½ ��k,k�1 X̂k�1þKkZk

Pk=k�1 ¼ �k,k�1Pk�1�
T
k,k�1 þ �k�1Qk�1�

T
k�1

Pk ¼ I� KkHk½ �Pk=k�1

Kk ¼ Pk=k�1H
T
k HkPk=k�1H

T
k þ Rk

� ��1

8>>>><
>>>>:

ð5Þ

X̂S
k ¼ �k,k�1 X̂k�1

Pk ¼ �k,k�1Pk�1�
T
k,k�1 þ �k�1Qk�1�

T
k�1

(
ð6Þ

where X̂k is the state estimation with measurement
vector Zk, X̂

S
k is the state estimation result of priori

information, which is called state recursive device or
shadow filter.

Then the difference between the two states can be
regarded as the residual, and the two filters can be
considered as supervision to each other

�k ¼ X̂S
k � X̂k ð7Þ
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In general, the precision of navigation system
depends on the inertial error, system noise, and mod-
eling errors, which can be overcome through the mea-
suring value of Kalman filter. However, there is no
measurement vector in state recursive device which
leads to the state estimation error of X̂S

k increasing
with the state of recursive deviates, thus, the residual
�k will become inaccurate.

Here, define the step prediction estimation as the
shadow filter estimation

X̂k=k�1 ¼ �k,k�1 X̂k�1 ð8Þ

Then, the residual can be rewritten as

rk ¼ Zk �Hk X̂k=k�1 ð9Þ

A set of residuals can be obtained by using the
Kalman filter in detecting faults. In order to verify
the feasibility of this method, some simulated sensor
faults are superimposed on the actual navigation data
from UAVs; the sensor faults type consists of hori-
zontal gyroscopes, horizontal accelerometers, and vel-
ocity and position information of GPS. To reduce the
amount of calculation, 13-dimensional Kalman filter
is used. The state vector and measurement vector can
be described by

X ¼ �Ve �Vn �’ �l ��e ��n ��u . . .
�

�"X �"Y �"Z �aX �aY �aZ
�T
ð10Þ

Z ¼ ½ �Vn
E �Vn

N �’n �ln �T ð11Þ

The experiment was processed and the navigation
results of Kalman filter sensor fusion are demon-
strated in Figure 1. In this contrast experiment, we
add 0.5m/s error on the original measurement of
GPS east velocity as shown in Figure 2. The results
show that the east velocity and position have a

deviation from the normal condition after the fourth
minute. As shown in Figure 3, the attitudes have
minor changes at the time of four.

In order to verify the reliability, faults of multiple
levels are applied to GPS east velocity. The normal-
ized residual sequence in this situation is described in
Figure 4; corresponding with the state vector, it can
be seen that the residuals of east velocity and roll
angle change larger than others; moreover, the trend
of the residual sequence is similar, no matter what the
size of the fault is.

The other residual sequences of faults condition
can also be calculated in the same way. Due to
space limitations, residual sequences of east position
fault and X gyroscope fault are demonstrated in
Figures 5 and 6.

Comparing the above multiple figures of residual
sequence, it can be seen that the shape of the residual
sequence changes with the fault state, but it is very
similar in certain case with different fault amplitude.
Therefore, a clustering algorithm is needed to be put

Figure 2. The velocity error in different conditions.

Figure 3. The attitude angle in different conditions.Figure 1. The position error in different conditions.
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forward to analyze the fault state based on the nor-
malized values of residual sequence.

FDD algorithm based on fuzzy system
and NN

Intelligent fuzzy logic system is an effective method in
clustering analysis field. The membership functions of

fuzzy system can be realized by summarizing a large
amount of practical data or by actual operation
experience, and an accurate function can improve
the effect of the fault detection system. In this
paper, the NN is used as an induction method for
fuzzy system. The NN consists of smaller units
called neurons which are trained through a learning
process, while interneuron connection strengths,
known as synaptic weights, are used to store know-
ledge. In this method, the neurons of NN are replaced
by membership functions of fuzzy system. As shown
in Figure 7, the system has a simple architecture of
four layers (input layer, membership function layer,
hidden layer, and output layer). The input layer just
transfers input signal to next layer. The hidden layer
performs a fixed nonlinear transformation with no
adjustable parameters and maps the input space
onto a new space. The membership function layer is
a kind of deformation of the hidden layer, whose
neurons are replaced by membership functions of
fuzzy system. The output layer then implements a
linear combiner.

As is shown in Figure 8, the input layer is a one-
dimensional vector which represents the residual
vector. The neurons Fij are Gaussian membership
functions which can be described as

Fij ¼ exp �
xi �mij

� �2
�2ij

 !
ð12Þ

where mij and �ij are mean value and variance of
Gaussian membership function, respectively.

In order to simplify the system, three linguistic
values are used in fuzzy, namely NH, ZE, PH.
Figure 8 shows the Gaussian membership function

Figure 7. The model structure of NN.

Figure 5. The residual sequence of east position fault.

Figure 6. The residual sequence of X gyroscope fault.

Figure 4. The residual sequence of east velocity fault.
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of fuzzy system before NN training. The Takagi–
Sugeno model is used as the fuzzy rules.

The training process of FDD method based on
fuzzy and NN is composed of four steps: generating
failure data, establishing the structure of FDD system,
parameter optimization training, parameter extraction.

Generating failure data

The fault sample data are obtained by adding fault
information to the several experimental data. In order
to simplify the training process, fault types are num-
bered from 1 to 8 which represents X accelerometer, Y
accelerometer, X gyroscope, Y gyroscope, east vel-
ocity, north velocity, east position, and north pos-
ition, respectively.

Establishing the structure of FDD system

The structure of FDD system is established according
to the introduction above.

Parameter optimization training

First, a series of residual sequence needs to be gener-
ated by calculating the fault sample data and be

normalized. Then, the residual sequences and fault
numbers are transported to the FDD system as the
input and output.

Parameter extraction

After training, the membership functions are obtained
which can be used by fault detection.

Figure 9. The MEMS system of ADIS16488.

Figure 10. The membership function after NN training. NH:;

PH:; ZE:22.

Figure 8. The membership function before NN training. NH:

Negative High; PH: Positive High; ZE: Zero.

Table 1. Specification of the system.

Sensor performance GPS

Location accuracy 1:2 m RMSð Þ

Velocity accuracy 0:03 m=s RMSð Þ

Sensor performance Gyroscope Accelerometer

Full scale �450 to þ450 �=s �18 to þ 18 g

Bias stability 5:1 �=h 0:07 mg

Scale factor error 35 ppm=�C 25 ppm=�C

GPS: Global navigation system; RMS: Root Mean Square
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FDD system testing and experimental
results

In this section, several off-line experimental tests have
been implemented to confirm the validity of the pro-
posed method. As shown in Figure 9, the original
signal is acquired from a navigation and flight control
system which is equipped with a MEMS IMU named

ADIS16488 and a GPS board. The key manufacture
specifications of the system are listed in Table 1.

To verify the performance of the proposed method,
several experimental data with different faults are
used as samples to optimize the system parameters.
Figure 10 shows the trained membership function
which has changed a lot compared with before.

Then, the checking experiments are performed. Since
many kinds of failures were mentioned before, here only
Y gyroscope fault is introduced as an example. In
Figure 11, the bias of 0.5 rad/s, which is an appropriate
fault size in the real gyroscope, is added to the output of
Y gyroscope at 2 and 6min with different duration time.
Then, the residual sequence changes immediately. As
shown in Figure 12, the residuals of Ve, Vn, and ’ are
larger than others when the fault occurs. Finally,
depending on the residual sequence, in Figure 13, the
fault type of number 4 is obtained from the FDD
system, and it is response to the sensor fault.

Conclusion

The use of UAVs requires the improvement of control
system to avoid potential accidents. As a core compo-
nent of UAVs, INS/GPS system plays an important
role in flight control system. This paper has presented
a FDD system for sensor fault detection of integrated
navigation system. The proposed FDD method is
based on fuzzy system and NN, which has an advan-
tage of requiring no accuracy model of UAVs. After
calculating the residual sequences of sensor faults
using the Kalman filter, the FDD method is put for-
ward for fault detection and the complex relationship
between sensor faults and observation residuals can
be described by a set of learning coefficients and mem-
bership functions. Several experimental tests have
been implemented on a control and navigation
system, then, the proposed fault detection algorithm
was implemented. The results show that the proposed
method can detect the sensor faults successfully with
high levels of accuracy and efficiency.
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