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Abstract— The paper develops a feature learning-based method to
solve optimal control problems using B-splines to approximate the
optimal solutions. The feature learning-based optimal control method
can quickly generate near-optimal trajectories for general optimal
control problems subject to system dynamics and constraints. The steps
in the proposed method are as follows: Firstly, by representing the
state and control variables with B-spline functions, the optimal control
problem is converted into an approximate nonlinear programming
(NLP) problem, where parameters of the B-splines are identified as
features of the optimal solution. Secondly, for a specific problem with
designated inputs, a dataset of the optimal trajectories under varying
inputs is generated by solving the corresponding NLP problem offline.
Finally, the neural network is applied to map the relationship between
the designated inputs and identified features, represented by the
parameters of B-splines and time variables. To show the effectiveness
and efficiency of the proposed method for solving the optimal control
problems, extensive simulation cases are presented and analyzed.

Index Terms— Supervised Learning; Optimal Control; B-spline;

I. INTRODUCTION

Optimal control methods deal with the problem of determining
the control policy for a dynamic system that can optimize a specified
performance index while satisfying certain constraints [1]. The
approaches developed to solve optimal control problems have been
classified into two categories, indirect methods and direct methods.
Indirect methods are based on the first-order optimality conditions
derived from Pontryagin’s minimum principle [2]. However, the
analytical solution obtained from the indirect methods is available
only in very few special cases due to the complexity and non-
linearity in a practical dynamic system. For most of the numerical
algorithms combined with the indirect methods, the convergence
can not be guaranteed due to the sensitivity of adjoint variables
[3].

On the other hand, in a direct method, the constrained optimal
control problem is generally transformed into a finite-dimensional
nonlinear optimization problem using direct collocation techniques,
such as trapezoidal, Runge-Kutta, and Chebyshev [4], [5], [6].
These methods can be implemented to find a local optimal solution
but often require a good initial guess [7]. When applied to online
calculation, however, numerical performance, e.g., global conver-
gence, cannot be guaranteed for direct methods. In addition, consid-
ering the nonconvexity of the reformulated nonlinear optimization
problem, many relaxation methods have been developed to further
improve the computational efficiency [8]. Even though relaxation
methods are time efficient, the discretized optimal trajectories are
not continuous or smooth, and require further processing, e.g.,
interpolation, for onboard implementation. Therefore, improvement
is required for both the efficiency and effectiveness of the direct
methods while ensuring the smoothness of the optimal trajectory.

To solve optimal control problems in real time, the machine
learning method, which is a branch of artificial intelligence, has
been studied [9], [10], [11]. For example, [12], [13] applied
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supervised learning to learn the cost functions, dynamic models,
or complex environments to generate onboard feedback control
laws. In addition, by mapping the relationship between the initial
conditions and the optimal state–control pairs using the supervised
learning, a near-optimal solution has been reconstructed in real-time
[14]. In [15], without the knowledge about the Hamiltonian param-
eters, unsupervised learning has been applied to learn a parametric
function according to the symplectic gradient of the Hamiltonian
function. Then, the well-trained model is able to predict the accurate
conserved quantities from data in an unsupervised manner. In
addition, via updating the weighting factors of the neural network
onboard, reinforcement learning has also been widely applied to
solve the optimal control problems [16].

When applying supervised learning to solve optimal control
problems, existing approaches construct neural networks to map
the relationship between problem inputs and state-control pairs,
which requires generating a large-scale dataset and heavy load of
computation for data training [14]. To reduce the computational
load, our work in [17] finds parameters to represent the features
of an optimal control solution when solving bang-bang optimal
control problems. However, for general optimal control problems
with nonlinear dynamics and constraints, it is challenging to develop
a uniform approach to identify features of an optimal solution such
that the learning space can be significantly reduced. This paper
focuses on developing a uniform approach of identifying features
of general optimal control problems by using B-splines to represent
the optimal solutions.

The B-spline function has a wide range of applications across
different domains, due to its ability to create complex shapes
and surfaces using a few parameters. Graphically, a B-spline is
a combination of flexible bands that are determined by a number
of points called knot points. The key properties of B-spline are
local propagation and the ability to select the degree of spline
independent of number of control points, which will be discussed in
Section III-A. Due to the compact form of B-spline in representing
different shapes and the associated properties, it is introduced to
represent an optimal solution. Then, parameters of B-splines are
identified as features of an optimal solution. A A higher degree
B-spline results in increased accuracy of the solution.

To solve the optimal control problem in real time, this paper
proposes a B-spline based feature learning (BFL) approach. The
advantages of the proposed method include: (1) The proposed
BFL approach can be applied to solve general optimal control
problems. (2) The neural network needs to train only a few B-
spline parameters and time variables, which greatly reduces the
complexity of the network and the training time. (3) Successful
training of the neural network can quickly generate near-optimal
trajectories, which can be used for onboard applications.

The paper’s organization is as follows: In Section II, the general
formulation of the optimal control problem is introduced. In Section
III, the proposed BFL approach is presented in detail. In Section
IV, the results of the proposed method in solving a classical optimal
control problem are shown and analyzed. Conclusions and future
work are presented in Section V.
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II. OPTIMAL CONTROL PROBLEM

This section introduces the general optimal control problem of the
continuous-time system. Here, we will classify the general optimal
control problem into three categories: the unconstrained optimal
control problem, optimal control problem with state constraints,
and optimal control problem with control constraints. The proposed
method considers the following assumption:

Assumption 2.1: The control can be explicitly written in the
form of states and/or their derivatives.

A. Unconstrained optimal control problem

The unconstrained optimal control problem of the continuous-
time system can be expressed as

min
u,tf

J = φ(tf ,x(tf )) +

∫ tf

t0

L(t,x,u)dt (1)

s.t. ẋ = f(x,u, t)

x(t0) = x0, ψ(x(tf ), tf ) = 0,

where u ∈ Rm is the control vector, x ∈ Rn is the state vector,
t refers to time, J is the objective function, the function φ defines
the end point cost, the integral of L over the time is the path cost, f
refers to the system dynamics, x0 represents the values of the initial
state vector, function ψ refers to the terminal state constraint, and tf
refers to the terminal time. The objective of (1) is to find the history
of the control variable(s) that will minimize a given cost function
J, while satisfying the system dynamics and boundary constraints.

B. Optimal control problem with state constraints

The optimal control problem with state constraints can be ex-
pressed as

min
u,tf

J = φ(tf ,x(tf )) +

∫ tf

t0

L(t,x,u)dt (2)

s.t. ẋ = f(x,u, t)

gi(t,x) ≤ 0, i = 1, 2, . . . , gn

x(t0) = x0, ψ(x(tf ), tf ) = 0,

where gi(t,x) ≤ 0, i = 1, 2, . . . , gn, represent the state con-
straints, and gn is the number of state constraints. Note that, gi(t,x)
does not contain the control vector and it can either be a linear or
non-linear function.

C. Optimal control problem with control constraints

The optimal control problems with control constraints are ex-
pressed as

min
u,tf

J = φ(tf ,x(tf )) +

∫ tf

t0

L(t,x,u)dt (3)

s.t. ẋ = f(x,u, t)

hi(t,u) ≤ 0, i = 1, 2, . . . , hn

x(t0) = x0, ψ(x(tf ), tf ) = 0,

where hi(t,u) ≤ 0, i = 1, 2, . . . , hn, represents the control
constraints and hn is the number of control constraints.

Note that, under Assumption 2.1, an optimal control problem
with mixed state and control constraints, i.e., gi(t,x,u) ≤ 0, i =
1, 2, . . . , gn, can be classified as an optimal control problem with
state constraints, where the control vector can be explicitly ex-
pressed as a function of the state vector, denoted as u = O(t,x, ẋ).
Then the control constraints can be equivalently expressed as
hi(t,u) = hi(t,O(t,x, ẋ)) ≤ 0, i = 1, 2, . . . , hn.

III. B-SPLINE BASED FEATURE LEARNING APPROACH

In this section, the optimal control problem is reformulated
using B-spline representations. Compared with the traditional direct
methods based on discretization and collocation techniques, the
reformation based on B-splines can reduce the total number of
parameters to be optimized, which implies a reduced number of
variables for learning. In addition, the smoothness of the optimal
trajectory can be guaranteed via the B-spline representations. After
solving the B-spline based parameter optimization problem off-line,
the solutions are used to construct the dataset for the artificial
neural networks. By representing the optimal solution with only
a few parameters of B-spline, the required learning space can be
significantly reduced.

A. Uniform B-spline function

In most cases, a smooth optimal trajectory can be represented
by spline curves. Two of the most commonly used spline curves
are the Bezier curve and B-spline curve. Even though both curves
can be used to define complicated shapes and surfaces, there are a
few limitations associated with Bezier curves. First, it has global
propagation. In other words, changing any control point can lead
to the change of the entire shape of the curve, as every point on
the curve is defined by all the control points. Second, the degree of
the Bezier curve depends on the number of control points, which
requires spline curves with a higher degree when a large number
of control points are involved to define a curve.

In contrast, B-splines is a continuous union of Bezier curve and
offers the advantages such as: (1) Local propagation, which means
changing any control point affects only a segment defined by this
control point, while the rest of the curve remains the same. (2)
Uncoupled relationship between the degree of the spline and the
number of control points. Thus it offers more flexibility to choose
the degree of spline and the number of control points independently.
(3) Capability to express complex curves with only a few parameters
while ensuring the smoothness of the trajectories [18]. It offers
Cn−1 continuity based on the degree ‘n’ of the Bezier curve used
to develop the nth degree B-spline. For instance, a cubic B-spline
is a union of cubic Bezier curves and C2 continuous, which offers
both slope and curvature continuity. These properties of B-spline
over the other conventional curves motivate us to use it to define
optimal trajectories.

The expression of a uniform B-spline with degree k and r + 1
control points is

S(t) =

r∑
i=0

Ni,k(t)Pi ; tmin ≤ t < tmax (4)

where Pi represents the control point, tmin and tmax are the
minimum and maximum time. Ni,k(t) is a basis function defined
by Cox-de Boor recusion formula expressed as

Ni,0(t) =

{
1, ti ≤ t < ti+1

0, otherwise

Ni,j(t) =
t− ti

ti+j − ti
Ni,j−1(t) +

ti+j+1 − t
ti+j+1 − ti+1

Ni+1,j−1(t)

where T = (t0, t1, ....tm) is called a knot vector, and its
elements are knot points. The total number of knot points for the
above formulation is m+ 1, where m is given by m = k+ r+ 1.
The knot vector determines which basis function affects the shape
of B-spline. The degree ‘k’ can be selected depending on the
accuracy requirements of the solution, where k ∈ [2, r + 1].
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A uniform B-splines is a B-spline segmented in equal steps such
that the distance between any two adjacent knots is equivalent. For
example, the quadratic uniform B-spline for t ∈ [0, 1] has three
active basis functions, which can be expressed in a matrix form as

b(t) =
1

2!

[
P0 P1 P2

]  1 −2 1
−2 2 1
1 0 0

t2t
1

 . (5)

In general the B-spline function of degree k can be expressed as

b(t) =
1

k!
PTAt, (6)

where P = [P0, ...., Pk−1, Pk]
T ∈ Rk+1 is a parameter vector, A

∈ R(k+1)×(k+1), and t = [tk, tk−1, ...., t0]T ∈ Rk+1 are constant
matrices. A more detailed description of B-splines can be found in
[19].

B. B-spline representation for the optimal control solution

For the unconstrained optimal control problem, by assuming that
the optimal state vector x is smooth, the state vector x can be
approximated by a polynomial function of t. However, once state
constraints and control constraints are considered, the state vector
x is not necessarily smooth. In that case, we assume that the state
vector x can be approximated via piece-wise polynomial functions.
Then in the following part, we will divide the optimal control
problem into three categories, the unconstrained optimal control
problem, the optimal control problem with state constraints, and
the optimal control problem with control constraints. As we have
mentioned that the optimal control problems with mixed state and
control constraints can be regarded as the optimal control problem
with state constraints, it will not be discussed in the following part.
Then, the process of applying the B-spline function to reformulate
the optimal control problem will be discussed case by case.

Type 1, Unconstrained optimal control problem: In the un-
constrained optimal control problem (1), each state and control
variable can be expressed as a B-spline function, denoted as
X = x(Ωx, t) = 1

k!
ΩxAt and U = u(Ωu, t) = 1

k!
ΩuAt,

where Ωx =
[
Px1 ,Px2 , ...,Pxn

]T ∈ Rn×(r+1) and Ωu =[
Pu1 ,Pu2 , ...,Pum

]T ∈ Rm×(r+1). Thus, the optimal control
problem can be reformulated as

min
Ωx,Ωu,tf

J = φ(tf ,Xtf ) +

∫ tf

t0

L(t,X,U)dt (7)

s.t. X = x(Ωx, t) =
1

k!
ΩxAt

U = u(Ωu, t) =
1

k!
ΩuAt

Ẋ = f(X,U, t)

Xt0 = x0, ψ(Xtf , tf ) = 0.

Therefore, for unconstrained optimal control problems, the un-
known variables, including the B-spline parameters, Ωx and Ωu,
and the final time tf , are identified as features for this type of
problem.

Type 2, Optimal control problem with state constraints: A
state constrained optimal control problem applies constraint on state
variables, where the constraint can be a linear or nonlinear function.
When the state constraints are active along the optimal trajectory
for a nontrivial interval, these constraints force the trajectory to be
divided into multiple segments that are not necessarily smooth.

To better illustrate the optimal solutions of the optimal control
problems with state constraints, a diagram of the optimal trajectory
for an optimal control problem with state constraints is shown in

Fig. 1, where the state constraint gi(t,x) ≤ 0 is marked with
dashed line, and the optimal solution is represented by the solid
line. It can be found that in Fig. 1 the state constraint is active
along two intervals, denoted as intervals [tb1, tb2] and [tb3, tb4].
Note that, for the nontrivial interval where tb1 6= tb2, it is named
boundary interval, and for the trivial interval where tb3 = tb4, it is
named contact point. For simplicity but without loss of generality,
we will explain how to identify features for an optimal trajectory
with multiple segments, where only one boundary interval and one
contact point are included, as shown in Fig. 1.

Fig. 1: A diagram of the optimal trajectory for an optimal control
problem with state constraints

It can be found that the optimal trajectory in Fig. 1 is divided
into 4 segments, [t0, tb1], [tb1, tb2], [tb2, tb3] and [tb4, tf ]. Then, we
need 4 independent B-spline functions to represent the features of
all segments and the time variables tb1, tb2, tb3, and tf to represent
the remaining parts of features for the optimal solution. In fact, the
contact point with an active state constraint can be regarded as a
special case of the boundary interval with tb3 = tb4. Therefore, to
make the BFL approach general, a B-spline function is also assigned
to the interval [tb3, tb4] for active state constraint on the contact
point.

According to the above analysis, for a finite interval [t0, tf ], there
are a finite number of boundary intervals and contact points. When
the number of boundary intervals and contact points are determined,
denoted by K, parameters of 2K+1 independent B-spline functions
and 2K+1 time parameters are identified as features for the optimal
solution with state constraints. Thus, the optimal control problem
can be reformulated as

min
Ω

j
x,Ω

j
u,tb,j

J = φ(tf ,Xtf ) +

2K∑
j=2

∫ tb,j

tb,j−1

L(t,Xj ,Uj)dt (8)

+

∫ tb,1

t0

L(t,X1,U1)dt+

∫ tf

tb,2K

L(t,X2K+1,U2K+1)dt

s.t. Xj = x(Ωj
x, t) =

1

k!
Ωx

jAt, j = 1, 2, ..., 2K + 1

Uj = u(Ωj
u, t) =

1

k!
Ωu

jAt, j = 1, 2, ..., 2K + 1

Ẋj = f(Xj ,Uj , t), j = 1, 2, ..., 2K + 1

gi(t,X
j) ≤ 0, j = 1, 2, ..., 2K + 1, i = 1, 2, . . . , gn

gi(t,x(Ω
j
x, t)) = 0, tb,j ≤ t ≤ tb,j+1,

j = 1, 3, ..., 2K − 1, i = 1, 2, . . . , gn

Xt0 = x0, ψ(Xtf , tf ) = 0,

where tb,j and tb,j+1 are the starting and ending time of the jth
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B-spline segment for j = 1, 3, ..., 2K − 1.
However, the number of boundary intervals and contact points are

not directly given before solving problem (8). The number K can be
determined by either the optimal control theory or numerical search.
For instance, for the optimal control problem (2) with m = n = 1,
the third-order state constraint will only have one contact point
according to the Pontryagin’s maximum principle [20]. Thus, we
can determine K = 1 for that special case. However, for the other
cases with m > 1 or n > 1, the maximum number of boundary
intervals and contact points cannot be determined analytically. For
those cases, numerical search will be applied to gradually increase
the integer number K within a range till the minimum value of
problem (8) is obtained.

Type 3, Optimal control problem with control constraints:
Similar to the state constrained problem discussed above, a control
constrained optimal control problem can also be processed in the
same way. When the control constraints are active along the optimal
control profile, the optimal control and trajectory are divided into
multiple segments. Assuming that the number of the boundary
intervals and the contact points is finite in the interval [t0, tf ], and
G refers to the number of boundary intervals and contact points.
Thus, in such a problem, parameters of 2G + 1 independent B-
spline functions and 2G + 1 time parameters are the features for
the coreresponding problem. The optimal control problem can be
rewritten as

min
Ω

j
x,Ω

j
u,tb,j

J = φ(tf ,Xtf ) +

2G∑
j=2

∫ tb,j

tb,j−1

L(t,Xj ,Uj)dt (9)

+

∫ tb,1

t0

L(t,X1,U1)dt+

∫ tf

tb,2G

L(t,X2G+1,U2G+1)dt

s.t. Xj = x(Ωj
x, t) =

1

k!
Ωj
xAt, j = 1, 2, ..., 2G+ 1

Uj = u(Ωj
u, t) =

1

k!
Ωj
uAt, j = 1, 2, ..., 2G+ 1

Ẋj = f(Xj ,Uj , t), j = 1, 2, ..., 2G+ 1

hi(t,U
j) ≤ 0, j = 1, 2, ..., 2G+ 1, i = 1, 2, . . . , hn

hi(t,u(Ω
j
u, t)) = 0, tb,j ≤ t ≤ tb,j+1,

j = 1, 3, ..., 2G− 1, i = 1, 2, . . . , hn

Xt0 = x0, ψ(Xtf , tf ) = 0.

C. Offline solution for optimal control problems with B-spline
representations

The B-spline representation for the optimal control problems
discussed above identify features for the three types of optimal
control problem. However, we cannot solve the formulated prob-
lems in (7)-(9) directly to find the values of the identified features.
Since the state and control are represented by B-spline functions in
the system dynamics, denoted by Ẋ = f(X,U, t), the dynamics
cannot be satisfied all the time, over the time interval [t0, tf ] for
a limited number of B-spline parameters with a given degree. To
approximately satisfy the system dynamics, discrete knot points
are applied to the B-spline function, which converts the parameter
optimization problems in (7) - (9) into NLP problems. Then, an
NLP problem needs to be solved to determine values of identi-
fied features under given inputs, e.g., boundary conditions and/or
parameters in the dynamics. For simplicity, the conversion of the
unconstrained optimal control problem (1) into an NLP is illustrated
here. With the whole time interval [t0, tf ] being equally discretized
into [t0, t1, t2, ..., tQ], where t0 < t1 < t2 < ... < tQ = tf ,
the unconstrained optimal control problem with a single state and

control can be reformulated as

min
Ωx,Ωu,tf

J = φ(tf ,Xtf ) +

Q∑
q=1

L(tq,Xq,Uq) (10)

s.t. Xq = x(Ωx, tq) =
1

k!
ΩxAtq, q = 1, 2, ...Q

Uq = x(Ωu, tq) =
1

k!
ΩuAtq, q = 1, 2, ...Q

Ẋq = f(Xq,Uq, tq), q = 1, 2, ...Q

X0 = x0, ψ(Xtf , tf ) = 0.

By solving the reformulated problem (10), the values of identified
features, Ωx, Ωu, and tf , can be determined. Similarly, the values
of features identified in (8) and (9) can be obtained by applying
discretization to each B-spline segment and then solving the refor-
mulated NLP problem.

D. B-spline based Feature Learning Approach

With the B-spline representation for the optimal control solution,
the remaining part is to apply the neural network to learn these
identified features. Figure 2 shows the structure of the neural
network for the optimal control problem with identified features.
The neural network is comprised of three distinct types of layers,
input layer, hidden layer, and output layer. In each layer, multiple
activation functions are included. Depending on the trends being
observed in outputs, a proper combination of linear and nonlinear
activation function is required to achieve fast convergence rate along
with minimum error between the learnt data and the actual data.
More information on the artificial neural network can be found in
[21].

Fig. 2: Structure of multilayered feedforward neural network

The implementation of the BFL approach contains two main
parts: offline and online, as described by the flowchart in Table I.
For the offline part, there are four steps. First, the original optimal
control problem is translated into an approximate B-spline based
parameter optimization problem subject to dynamics, boundary
constraints, and state/control constraints, where each state/control is
represented by a B-spline function. Second, for a studied optimal
control problem, the ranges of inputs, e.g., boundary conditions
and/or parameters in the dynamics, are determined. Then, for
each case with given inputs, the corresponding B-spline and time
parameters, identified as features of the optimal control solution are
obtained via solving the formulated NLP problem (10). By solving
a sufficient number of cases within the selected input range, a
sufficiently large dataset is generated, where the inputs are boundary
conditions and/or dynamics parameters and outputs are B-spline and
time parameters. Finally, the neural networks can be constructed
and trained to map the relationship between inputs and outputs of
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TABLE I: Flowchart of BFL

Algorithm: B-spline based feature learning approach
Off-line part:
1) Determine the type of the optimal control problem and
reformulated it into problem (9);
2) Select the range of inputs for (10);
3) Via solving (10) within the selected range, a dataset of optimized
Ωx, Ωu, and time parameters under varying inputs is generated;
4) Construct and train the neural networks to map the relationship
between inputs and Ωx, Ωu, and time parameters;
On-line part:
1) Calculate Ωx, Ωu, and time parameters according to the trained
neural networks under given inputs
2) Reconstruct the optimal control and state via Ωx, Ωu, and time
parameters

the generated dataset. For the on-line part, there are two steps.
First, for a given input set, the optimized parameters Ωx, Ωu,
and tf can be found via the trained neural network. Next, the
optimal control and state variables can be reconstructed on-board
via x(Ωx, t) =

1
k!

ΩxAt and u(Ωu, t) =
1
k!

ΩuAt.

IV. SIMULATION RESULTS

To verify the effectiveness of the proposed method, a classical
optimal control problem, the Brachistochrone problem is presented
in this section. The results obtained from the proposed BFL method
are analyzed and compared to the analytical and/or NLP solutions.
All the simulations are conducted on a laptop with i7-8750H CPU
@ 2.20GHz and 16GB of RAM.

The unconstrained Brachistochrone problem can be formulated
as:

min
u,tf

J =
∫ tf
t0

1dt

subject to ẋ = V cos(u), ẏ = V sin(u)
V =

√
2gy

x(t0) = x0, y(t0) = y0, x(tf ) = xf , y(tf ) = yf ,

(11)

where V is the velocity of the particle and u is the angle between the
direction of V and the x-axis, [x, y] represents the position of the
particle, t0 and tf are the starting and ending time, respectively. To
satisfy the conservation of energy, V =

√
2gy. The objective is to

minimize tf , while satisfying the dynamics, boundary constraints,
and the energy conservation constraint.

In general, the higher the degree of B-spline is, the higher the
accuracy of the generated trajectory will be. To balance between
the computational load and accuracy, B-splines with degree k = 4
is used to represent the states in this problem. The constant matrix
A in (6) for the fourth degree B-spline with t ∈ [0, 1) and 5
control points is given by:

1 −4 6 −4 1
−4 12 −6 −12 11
6 −12 −6 12 11
−4 4 6 4 1
1 0 0 0 0

 .

Then the states vector can be written as X = [x, y] and expressed
as

X(τ) =
1

4!
ΩxAT, (12)

where Ωx = [P1,P2]
T ∈ R2×5 represents the parameter matrix

for the two B-splines and P1,P2 ∈ R5 are two parameter vectors
associated with x and y, respectively. In addition, in equation (12),

T = [τ4, τ3, τ2, τ, 1] and τ ∈ [0, 1] is the unified time and the
relationship between τ and the real time t can be expressed as

t = (tf − t0)τ + t0. (13)

With Ωx and A being constant matrices, Ẋ can be expressed as

Ẋ(τ) =
1

4!
ΩxAṪ, (14)

where Ṫ can be expressed as [ 4τ
3

tf
, 3τ2

tf
, 2τ
tf
, 1
tf
, 0]T . For this

problem, since we have the boundary conditions

X(0) = [x0, y0]
T ,

X(1) = [xf , yf ]
T (15)

we can further reduce the number of B-spline parameters.
Here we denote P1 = [P1,0, P1,1, P1,2, P1,3, P1,4], P2 =
[P2,0, P2,1, P2,2, P2,3, P2,4], by substituting equation (15) into (14),
the parameters P10, P14, P20 and P24 can be obtained by

P1,0 = 24x0 − 11P1,1 − 11P1,2 − P1,3,
P1,4 = 24xf − P1,1 − 11P1,2 − 11P1,3,
P2,0 = 24y0 − 11P2,1 − 11P2,2 − P2,3,
P2,4 = 24yf − P2,1 − 11P2,2 − 11P2,3.

(16)

Thus, in the vector P1 and P2, only 6 variables need to be
determined, which are P1,1, P1,2, P1,3 and P2,1, P2,2, P2,3.

According to (11), the variable u can be explicitly expressed by
states for this specific problem, written as

ẋ2 + ẏ2 = V 2,
V =

√
2gy.

(17)

Therefore, the B-spline function for representation of the control
variable is not required for this problem. By evenly discretizing
τ ∈ [0, 1] into 7 points [τ1, τ2, ...τ7], problem (11) can be rewritten
as an NLP problem,

min
P1,P2,tf

J = tf , (18)

subject to ẋ2q + ẏ2q = Vq
2, q = 1, 2, ...5,

xq =
1

4!
PT

1 ATq, q = 1, 2, ...5,

yq =
1

4!
PT

2 ATq, q = 1, 2, ...5,

Vq =
√

2gyq, q = 1, 2, ...5,

x1 = x0, y1 = y0,

y7 = xf , y7 = yf ,

where Tq = [τ4q , τ
3
q , τ

2
q , τq, 1]

T , xq , yq , and Vq represent the values
of x, y and V at the qth collocation point, respectively.

The proposed BFL approach is applied to solve the Brachis-
tochrone problem with different boundary conditions. Different
combinations of boundary conditions can be used to evaluate the
computational performance and effectiveness of the BFL approach.
For the simulation cases shown in this section, the boundary
conditions for generating the dataset are selected to be x0 = 0,
y0 = 0, xf = [4, 7] and yf = −10, and the size of the dataset is
chosen to be 1000. By solving problem (18) with a varying xf in
the range of [4, 7], the dataset is generated, where input and output
are xf and [P1,P2, tf ], respectively.

In addition, from the generated dataset, the data points for xf ∈
[4, 6.69] (900 data points) were used for training the neural network,
including 80% for training data, 10% for test data, and 10% for
validation data. Therefore, xf ∈ (6.69, 7] are points outside the
training dataset and can be used for validate the effectiveness of
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the BFL approach outside the training dataset. Then, the neural
network is applied to map the relationship between input and output.
In this example, a neural network with four layers is constructed
and the number of neurons in each layer is 20, 20, 20, and
10, respectively. Additionally, the activation functions include two
sigmoid functions, one hyperbolic function, and one ReLu function.
Then the simulation results of the Brachistochrone problem with
different constraints are presented separately.

A. Case 1: Unconstrained Brachistochrone problem

To verify the effectiveness of the BFL approach, the case with
xf = 7, which is outside the generated dataset, is simulated
and shown in Figure 3. Additionally, the optimal trajectory from
analytical solution, optimized trajectory via solving the problem
in (18), and the trajectory from BFL are marked with green solid
line, black dash line, and red points, respectively. It can be found
that all three trajectories are close to each other, which means
the trajectory from BFL is near optimal. The computational time
of NLP solver and BFL approach are 0.613 seconds and 0.018
seconds, respectively. It indicates the real-time performance of
the proposed BFL approach compared to the direct methods. In
addition, 1000 cases are simulated and compared by randomly
selecting xf ∈ [4, 7]. Comparing solutions of BFL with the optimal
ones, the root mean square error (RMSE) of tf is found to be
0.0037962 seconds. Thus, we can conclude that the BFL approach
is effective for solving the unconstrained Brachistochrone problem.

Fig. 3: Unconstrained trajectories for x0 = 0, y0 = 0, xf = 7 and
yf = −10.

B. Case 2: Brachistochrone problem with state constraints

In the state constrained Brachistochone problem, the state con-
straint is considered, expressed as

y ≥ −2.5x− 0.25. (19)

Figure 4 shows the relationship between the additional linear
constraint and the unconstrained solutions obtained in Section IV-
A, where the blue and orange curves are the solutions of the
unconstrained problem with xf = 4 and xf = 7, respectively,
while the pink curve represents the additional linear constraint in
(19). It is obvious that the original unconstrained Brachistochrone
problem cannot satisfy the state constraint specified above.

The simulation result in Figure 5 shows that the optimal trajectory
with the state constraint is composed of 3 segments, where the first
and third segments can be expressed with B-spline functions and
the second segment overlaps with the linear state constraint. To
determine such a trajectory, besides the parameters for B-spline

functions, the terminal time for each segment are also needed to be
determined.

Fig. 4: Unconstrained B-spline trajectories for xf = 4 and xf = 7
and the constraint line y = −2.5x− 0.25

Fig. 5: Trajectory segments for xf = 4.5 and the state constraint
y = −2.5x− 0.25

Figure 6 shows the simulation results of the Brachistochrone
problem with the state constraint and terminal xf = 7, where the
green solid curve shows the optimal trajectory obtained by solving
the problem directly from collocation and NLP, the black dashed
curve represents the B-spline trajectory obtained by solving (18),
and the red curve denotes the trajectory from BFL. The plots verify
that the trajectory from BFL is almost identical to the NLP solution.
Moreover, all the points on the BFL trajectory satisfy the linear
state constraint. The computational time of NLP solver and BFL
approach are 0.932 seconds and 0.019 seconds, respectively, which
indicates the real-time performance of the proposed BFL approach
again in solving optimal control problems with state constraints.
1000 cases are simulated with random xf selected within the range
xf ∈ [4, 7]. The RMSE of tf between the BFL solution and the
NLP solution is found to be 0.0199 seconds. Thus, the BFL method
can effectively solve the state constrained Brachistochrone problem.
C. Case 3: Brachistochrone problem with control constraints

The control constraints that added to the Brachistochrone prob-
lem is stated as

u̇ ≤ 1 rad/s, (20)

which indicates that the changing rate of path angle u is upper
bounded. Combining with the dynamics of the Brachistochrone
problem, (20) can be further expressed as

u̇ =
ÿẋ− ẏẍ
ẋ2 + ẏ2

≤ 1. (21)
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Fig. 6: State constrained trajectories for xf = 7 and the constraint
line y = −2.5x− 0.25

The simulation results of the Brachistochrone problem with the
control constraint for xf = 7 are shown in Figure 7, where
the optimized trajectory from NLP solver, B-spline trajectory via
solving (18), and trajectory from BFL are presented. It can be
found that all trajectories are close to each other, which verifies
that the trajectory from BFL is near optimal. The computational
time of NLP solver and BFL approach are 0.843 seconds and 0.018
seconds, respectively. It again indicates the real-time performance
of the proposed BFL approach in solving optimal control problems
with control constraints. In addition, 1000 cases are simulated by
randomly selecting xf ∈ [4, 7]. Comparing solutions of BFL with
the solutions from NLP, the RMSE of tf is found to be 0.0031
seconds. Thus, the BFL approach is effective in solving the control
constrained Brachistochrone problem.

Fig. 7: Control constrained B-spline trajectories for xf= 7

V. CONCLUSIONS

This paper develops a B-spline based feature learning approach
to solve the optimal control problem in real-time. First, the optimal
control problem is reformulated into an approximate parameter
optimization problem, and the optimal solution is represented with
only a few B-spline and time parameters, identified as features
of the optimal solution. Then, a dataset of optimized B-spline
parameters is generated for training via solving the reformulated pa-
rameter optimization problem with varying inputs. By representing
the optimal solutions with only a few identified parameters, greatly
reduces the complexity of the neural network and computational
cost for training. In addition, from the simulation results of the

Brachistochrone problem, it can be found that the computational
time of the proposed approach is less than 0.02 seconds for all cases.
At the same time a near optimal solution can be reconstructed. Thus,
we can conclude that the proposed B-spline based feature learning
approach can be promising in finding a near optimal solution along
with real-time computational performance.
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