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Microelectromechanical systems (MEMS) are core components in unmanned aerial vehicles (UAV). The precision of MEMS
sensors is very important when the GPS signal is invalid. However, the precision and performance of MEMS sensors will be
degraded by the changing of environment. Therefore, estimation and identification of the various noise terms existing in MEMS
sensors are deemed to be necessary. The Allan variance is a common and standard method to analyze MEMS sensors, but it
cannot be used to analyze the dynamic characteristics. The dynamic Allan variance (DAVAR) is a sliding version of the Allan
variance. It is a practical tool that could represent the nonstationary behavior of the MEMS signal. As the DAVAR needs to
estimate the Allan variance at each time epoch, the computation time grows significantly with the length of the signal series. In
this paper, in the case of MEMS gyroscope on UAV, an improved fast DAVAR algorithm based on the choice of relevant time is
proposed to shorten the computation time. As an experimental validation, numerical experiments are conducted under the
proposed method. The results demonstrate that the improved method could greatly increase the computation speed and does
not affect the accuracy of estimation.

1. Introduction

The unmanned aerial vehicles (UAV) have been widely used
in civil and military applications, including search and rescue
operations, area mapping, weather monitoring, and agri-
cultural operations [1–4]. Whenever the inertial navigation
system (INS) of UAV is concerned, cost or weight is always
an issue; therefore, the accurate inertial sensors have been
constantly excluded. Instead, the microelectromechanical
systems (MEMS) have been universally used [5–7], which
have the characteristics of lightweight, small mass, less
expensive, and lower power requirements [8, 9]. Typically,
MEMS sensors have large bias drifts and stochastic errors,
which make it difficult to use the MEMS sensors as INS only.
Generally, the combination of INS/GPS is used to provide an
ideal navigation system with full capability of continuous
position, velocity, and attitude output [10–12]. However,
the accuracy of the integrated navigation system degrades
with time when GPS signals are blocked in environments
such as high buildings and indoors. In order to control the
simple INS error within a certain range, it is necessary

to estimate and identify the various noise terms existing
in MEMS sensors.

Allan variance method is a time analysis technique devel-
oped by Dr. David Allan to study the characteristic of ran-
dom noise terms and stability in precision oscillators used
in clock application [13]. Allan variance method can be used
to determine the characteristics of the underlying random
processes which lead to data noises [14, 15], and it is also
generally used to identify the errors of inertial sensors (i.e.,
gyroscopes and accelerometers) [16–19]. The dynamical
Allan variance (DAVAR) is a sliding version of Allan vari-
ance, which could represent the nonstationary behavior of
the signal [20, 21]. For MEMS sensor analyses, DAVAR
could track and describe the dynamic characteristics of time
series, and it is advantageous to analyze the process of gyro-
scope errors. The DAVAR is a cluster of Allan variance;
therefore, the computational burden is very high because
the DAVAR requires the computation of an Allan variance
at every time instant [22, 23]. A recursive algorithm for
DAVAR is proposed in [24]. In this fast DAVAR algorithm,
the relationship of adjacent points of Allan variance has been
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revealed, then the calculation speed is accelerated. However,
the Allan variance also needs to be calculated in many points
of relevant times in this algorithm. In this paper, the MEMS
gyroscope is regarded as the object of the analysis, and an
improved method based on reasonable choice of relevant
time is proposed to shorten the computation time further;
the results show that the improved fast DAVAR algorithm
dramatically reduces the computational time without affect-
ing operation results.

The article is organized as follows: in Section 2, the
theoretical basis and implementation process of the Allan
variance and DAVAR are presented. In Section 3, the recur-
sive algorithm for the DAVAR is introduced and the existing
problems of this algorithm are discussed. Then, the improved
fast algorithm of DAVAR is derived step by step. The
experimental MEMS gyroscope signals are processed by
the improved method in Section 4, followed by conclusion
in Section 5.

2. The Principle of Allan Variance and DAVAR

2.1. Allan Variance. The calculation of Allan variance is
based on the method of cluster analysis. Assuming that the
signal of MEMS gyroscope is acquired at a sampling period
τ0, separating the N sampling data into K clusters and each
cluster includes m sampling data:

ω1, ω2,… , ωm

k=1

⋯ ωN−m+1, ωN−m+2,… , ωN

k=K

, 1

where ω∗ is the angular velocity and its unit is rad/s. The rel-
evant time is defined as τ =mτ0. The typical Allan variance
can be expressed as

σ2
A τ = 1

2 Ωk+1 −Ωk
2

= 1
2 K − 1 〠

K−1

k=1
Ωk+1 −Ωk

2, k = 1, 2,… , K ,
2

where Ωk = 1/m ∑m
i=1ω k−1 m+i represents the average value

of each cluster. By varying the number of samples per cluster,
variances are computed at different cluster length by (2). The
relationship existing between Allan variance σ2

A τ and
power spectrum density (PSD) of the intrinsic random pro-
cess is given by

σ2
A τ = 4

∞

0
SX f

sin4 πf τ

πf τ 2 df , 3

where SX f is the PSD of specified noise x t , namely, the
instantaneous output rate of the gyro, and τ is the relevant
time. Equation (3) indicates that the Allan variance is pro-
portional to the total power output of the random process
when passing through a filter with the transfer function of
the form sin4 x / x 2. This particular transfer function is
the result of the method used to create and operate on the
clusters [25].

Allan variance method could be used to analyze the com-
mon five basic gyro noise terms, including angle random

walk, rate random walk, bias instability, quantization noise,
and rate ramp. Each noise term could be accessed through
the PSD associated with Allan variance and can be described
as follows [26]:

σ2
QN τ = 3 ⋅Q2

τ2
,

σ2ARW τ = N2

τ
,

σ2
BI τ = B2 ⋅ 2ln 2

π
,

σ2RRW τ = K2 ⋅ τ
3 ,

σ2DRR τ = R2 ⋅ τ2

2 ,

4

where Q is the quantization noise coefficient, N is the angle
random walk coefficient, B is the bias instability coefficient,
K is the rate random walk coefficient, and R is the drift rate
ramp coefficient.

2.2. Allan Variance Estimation Accuracy. In theory, Allan
variance is a method which is used to analyze the stochastic
process with finite length. Therefore, the estimation error is
universal. Due to the finiteness of the divided clusters, the
mean squared error of 1 σ can be obtained by a straightfor-
ward calculation as [27]

EA τ = ∣ σA
∧

τ − σA τ ∣
σA τ

≈
1

2 N/m − 1
× 100% 5

Combining the definition of (3), it can be seen that the
confidence of Allan variance estimation improves as the
number K of independent clusters increases or the averaging
time τ decreases.

2.3. DAVAR. In the process of discrete calculation, angular
increment is always used instead of angular velocity. There-
fore, the Allan variance can be rewritten as

σ2A τ = 1
2 Ωk+m −Ωk

2

= 1
2τ2 θ n + 2m − 2θ n +m + θ n 2

= 1
2m2τ20

1
N − 2m 〠

N−2m−1

n=0
θ n + 2m − 2θ n +m + θ n 2 ,

6

where θ n is the angular increment at time n, which is the
integral value of angular velocity in a period of time and
can be described as θ n = τ∑m

i=1ω n−1 m+i. The unit of angular
increment is rad.

The DAVAR is defined as a sliding version of the Allan
variance, as Allan variance is a two-dimensional curve of
σ2
A τ ∼ τ, while the DAVAR is a three-dimensional figure

which changes over time t and relevant time τ. DAVAR
can be described as
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σ2A n,m = 1
2m2τ20

1
Nw − 2m

× 〠
n+Nw/2−2m−1

k=n−Nw/2
θ k + 2m − 2θ k +m + θ k 2,

7

where Nw is the discrete-time analysis window.

3. Improved DAVAR Method

As shown in (6), the DAVAR is obtained by computing
the Allan variance at each analysis time epoch t. With the
length of signals increasing, it can result in a large computa-
tional burden. Therefore, the algorithm with less time con-
sumption is urgently needed. In [24], the recursive property
of the DAVAR was researched. The detailed process is
described as follows.

Firstly, (7) can be redefined as

σ2A n,m = 1
2m2τ20

1
Nw − 2m 〠

n+Nw/2−2m−1

k=n−Nw/2
Δ2
m k , 8

where Δm k = θ k + 2m − 2θ k +m + θ k .
Then, the DAVAR at the next time epoch n + 1 is given

by

σ2
A n + 1,m = 1

2m2τ20

1
Nw − 2m 〠
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Δ2
m k
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Comparing (8) and (9), the recursive function can be
obtained as

σ2
A n + 1,m = σ2A n,m + 1

2m2τ20

1
Nw − 2m

× Δ2
m n + Nw

2 − 2m − Δ2
m n −

Nw
2 ,

10

where Δm n +Nw/2 − 2m = θ n +Nw/2 − 2θ n +Nw/2 −m
+ θ n +Nw/2 − 2m and Δm n −Nw/2 = θ n −Nw/2 + 2m
− 2θ n −Nw/2 +m + θ n −Nw/2 .

As a conclusion of the above analysis, when the com-
putation time goes from n to n + 1, the Allan variance at
time epoch n + 1 can be calculated by subtracting 1/2m2τ20
1/Nw − 2m × Δ2

m n −Nw/2 from the Allan variance at time
epoch n and adding 1/2m2τ20 1/Nw − 2m × Δ2

m n +Nw/
2 − 2m to the Allan variance at time epoch n. In this

way, the computation time can be decreased to a certain
extent. However, with the change of m, the Allan vari-
ances at time epoch 1 which are based on different rele-
vant times also need to be calculated. In this paper, an
improved fast DAVAR algorithm based on the selection
of relevant time τ is proposed.

As shown in (2), before calculating the Allan variance,
the relevant time τ is selected based on τ =mτ0. In other
words, the relevant time is a linear sequence in linear
coordinate system. However, for the convenience of intui-
tively analyzing the different stochastic noise terms, the Allan
standard deviation is always plotted on a log-log scale, and
the time axis is a logarithmic coordinate. For example, if
N = 10, 000 and the relevant time is selected as linear
sequence, the relevant time series distributing in log-log
coordinate system is showed in Figure 1.

As shown in Figure 1, the distribution in the log-log
coordinate system is more and more intensive with the
increasing of the relevant time. In practical application,
there is no need to calculate the Allan variance at each
continuous time sequence, which means that the cluster sizes
do not need to be consecutive as in the normal Allan variance
method. In this way, under the condition of without affecting
the trend of the Allan variance characteristic curve, if the
relevant time can be selected reasonably, the calculation
burden will be relieved.

According to the mathematics knowledge, if the relevant
time series are selected as geometric sequence, for example,
defining the exponential function τ i = τconτg

i−1, and after
the base number τg is selected, the Allan standard deviation
can be evenly distributed along the logarithmic-scale time
axis. Taking the precision of the Allan variance into consider-
ation, we define the estimation error 25% and the minimum
number of groups is

N
mmax

≥ 9, 11

where mmax refers to the amount of data in minimum
groups which is decided by the maximum relevant time
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Figure 1: Linear sequence τ distribution in logarithmic coordinate
system.
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that needs to be studied. Then, the following inequality
can be described:

τmax = τconτg
i−1 =mmaxτ0 ≤N

τ0
9 12

Defining N = 10, 000; τcon = 1; τ0 = 1s; and i = 100, the
base number can be calculated as τg = 1 073. The modified
relevant time series distributing in log-log coordinate system
is shown in Figure 2, and it is clear that the distribution of
modified relevant time series is more uniform.

4. Experimental Results

In this section, several experimental tests have been con-
ducted to confirm the validity of the proposed method. As
shown in Figure 3, the original signal is acquired from a nav-
igation and flight control system which is equipped with a
MEMS IMU named ADIS16488 on the printed circuit board
(PCB). The IMU is compensated for temperature sensitivities
to bias and scale factor and provides digital outputs of 3D
angular rate, 3D acceleration, 3D magnetic field, and baro-
metric altitude data. The key manufacture specifications of
this IMU are listed in Table 1.

The navigation and control system is fixed on an approx-
imate horizontal stationary platform as shown in Figure 4.
When calculating the Allan variance, in general, the time
period of collecting static data needs to be ten times longer
than the most significant noise relevant time. In our research,

multiple signals have been collected from MEMS IMU dur-
ing each 7-hour static test.

4.1. Performance of Allan Variance. To verify the perfor-
mance of the proposed method, a comparison between the
original Allan variance method and improved method is
made. The result shows that the two curves basically coincide
with each other in Figure 5. What is more, it is clear that
some details which are superimposed on the curve have been
removed without affecting the trend of the curve. The estima-
tion results of the five noise coefficients which are obtained
by the normal and modified Allan variance method are given
in Table 2; the result shows that the estimation error of mod-
ified method is very small or even negligible.

4.2. Performance of DAVAR. The proposed method is applied
in the computation of DAVAR. In Figure 6, we show the
DAVAR curve of the MEMS gyro signal whose data length
is 10,000.

Then, the comparison of time consumption is made
between normal DAVAR, fast DAVAR based on recursive
method, and improved fast DAVAR. The experiment is done
with a Matlab 7.11.0 program on an Intel Core2 Duo proces-
sor, with a clock of 3.2GHz. To further prove the reliability of
the proposed method, in Table 3, numerical experiments
with different length data are shown. It can be seen that when
the length of the time series is short, for example, 1 × 103, the
fast DAVAR saves 58.43% of computing time, and the
improved fast DAVAR saves 80.90% of computing time.
The operational efficiency is greatly increased with the
increase of data length. When the length of the time series
is 1 × 105, the fast DAVAR costs 862.07 s, and the improved
fast DAVAR costs only 51.87 s, while the classical DAVAR
costs 9672.39 s. The calculation results show that the fast
DAVAR reduces 91.09% of computing time and the
improved fast DAVAR reduces 99.46%. Therefore, the
improved fast DAVAR could shorten the calculation time,
and when the amount of data is larger, the operation is better.

5. Conclusion

For UAV use, it is necessary to estimate and identify the var-
ious noise terms existing in MEMS sensors. Allan variance is
a simple and efficient method for verifying and modeling
these errors. Under the condition of the complex application
environment, however, the analysis result of Allan variance
has only average effect, and the change of details cannot be
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Figure 2: Exponential sequence τ distribution in logarithmic
coordinate system.

Figure 3: The MEMS system of ADIS16488.

Table 1: Specification of the IMU.

Mass 58 g

Size 47× 44× 14mm

Operating temperature −40°C: 85°C
Sensor performance Gyroscope Accelerometer

Full scale −450~+450 (o/s) −18~+18 (g)

Bias stability 5.1 (o/h) 0.07 (mg)

Bandwidth 330 (Hz) 330 (Hz)

Scale factor error 35 ppm/°C 25 ppm/°C
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obtained. Being the extension and improvement of Allan var-
iance method, DAVAR is a representation of all the variances
obtained at every time epoch. However, the normal DAVAR
often takes too long to deal with long time series. In this
paper, an improved method based on chosen relevant time
τ is proposed, and some experimental researches have been
made. Firstly, the estimation results of the five noise coeffi-
cients which are obtained by the normal and modified Allan
variance method show that the estimation error of the mod-
ified method is very small or even can be neglected. Then,
combined with fast DAVAR algorithm based on recursive
method, the improved fast DAVAR algorithm is used for
multiple experimental data. The results show that the pro-
posed method could reduce the computing time significantly.

Figure 4: The laboratory experimental equipment.

100 101 102 103 104 105 106
100

101

102

103

�휏 (s)

�휎
 (�휏

)

Normal method
Modified method

Figure 5: Comparison of the two characteristic curves.

Table 2: Fit error coefficients of Allan variance.

Error Normal method Modified method

Qv/ o 6.0923e-3 5.9889e-3

Nv/ o ⋅ h−1/2 9.2444 9.2459

Bv/ o ⋅ h−1 4.0154 4.2011

Kv/ o ⋅ h−3/2 1.6420 1.7012

Rv/ o ⋅ h−2 1.1382e-1 1.4301e-1
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Figure 6: The DAVAR of MEMS gyro.

Table 3: Comparison between the DAVAR, fast DAVAR, and
improved fast DAVAR.

N DAVAR (s) Fast DAVAR (s)
Improved fast
DAVAR (s)

1 × 103 5.34 2.22 1.02

1 × 104 36.41 16.99 5.64

1 × 105 9672.39 862.07 51.87
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